TESIS PS999

UNIVERSIDAD CATÓLICA "ANDRÉS BELLO" FACULTAD DE HUMANIDADES Y EDUCACIÓN ESCUELA DE PSICOLOGÍA

PREFERENCIA DE AMBIENTES DE OFICINA Y SU RELACIÓN CON CIERTAS VARIABLES SOCIODEMOGRÁFICAS

Trabajo de Investigación Presentado por:

Luisa Mercedes ARENAS

V

Fabiola Margarita CALDERA

a la
Escuela de Psicología
Como un requisito parcial para obtener el título de
Licenciado en Psicología

Profesora Guía: Lissette FERNÁNDEZ

Caracas, Julio 1999

Este trabajo de grado es una parte importante que marca la culminación de mi carrera y es el fruto de cinco años de esfuerzo sostenido que no hubiese sido posible sin la ayuda de mis padres, a quienes dedico con todo mi corazón esta producción intelectual. Le doy gracias a mi mami que me atendió aquí en Caracas a pesar de la distancia, también a mi papi que siempre me ha dado la ayuda que he necesitado para vivir y estudiar fuera de la casa.

Dedicación especial para mis tíos: Julia y Francisco, que siempre me dieron la cola para viajar Maracay-Caracas con toda comodidad.

También quiero dedicar este trabajo a todas las personas que me han acompañado y con quienes he compartido estos cinco años de estudio, con mucho amor para el Dr. Belmonte, al grupo de terapia, a la mamá de Franca, a mis compañeros de residencia, a mi compinche de tesis Luisa y a mi corazón Robert.

Finalmente te doy gracias Señor, mi Dios, por darme toda la capacidad que tengo para trabajar y para ser un psicóloga de verdad, te alabo y te bendigo padre santo, mi rey celestial.

Fabiola Caldera Alexatos

A Dios por ser quien estuvo presente en todos mis pasos y consolidó la confianza.

A mis padres por su apoyo, su cercanía, gracias.

A mis hermanas, Carla, Lorena, Isabel por mantener siempre el espíritu de trabajo, sobre todo en los momentos más difíciles.

A JM por tu presencia en momentos claves.

Le doy las gracias a quienes brindaron una mano amiga, en momentos de desesperanza y quienes colaboraron en la realización de tan deseado proyecto.

LUISA ARENAS

AGRADECIMIENTOS

En realidad muchas fueron las personas que muy amablemente colaboraron para la realización de este trabajo, dedicándonos su tiempo, transmitiéndonos su conocimiento y facilitándonos sus sitios de trabajo.

Primeramente queremos agradecer a nuestra tutora, Lissette Fernández, ya que su excelente y amena asesoría, fueron pilar fundamental para la calidad de este trabajo; sin duda que las tardes y noches de pellets gigantes hicieron mucho más llevadero el esfuerzo realizado.

Por otro lado, agradecemos la muy valiosa colaboración, por demás desinteresada de todos aquellos que fueron nuestros contactos en las diferentes empresas, especialmente a las Licenciadas Gladys Grillo, Balbina Delgado, Cira Giunzioni, Leslie Archer, Sonia Rojas, Jorge Cortéz y Leila Camacho; así como a los arquitectos Severina Atella, Bolivia Chacón y Carlos Rodríguez.

De la misma manera les estamos muy agradecidas a todas las empresas y trabajadores que participaron en esta investigación, gracias a su colaboración se hizo posible toda nuestra fase de campo.

Por último agradecemos a toda la comisión de tesis por sus importantes observaciones sobre cada entrega parcial, sus correcciones y recomendaciones en todo momento nos resultaron de gran ayuda. Especialmente le damos las gracias al profesor Gustavo Peña, por ayudarnos con toda la parte metodológica.

ÍNDICE GENERAL

DEDICATORIA	11
AGRADECIMIENTOS	iv
ÍNDICE GENERAL	٧
ÍNDICE DE TABLAS Y FÍGURAS	V
ÍNDICE DE ANEXOS	ix
RESÚMEN	xi
INTRODUCCIÓN	1
MARCO TEÓRICO	3
PERCEPCIÓN	
Definición	4
Percepción de objetos	5
Percepción de ambientes	7
PREFERENCIA AMBIENTAL	
Definición	11
Preferencia de Paisajes	12
Dimensiones de la Preferencia en Ambientes Laborales	16
AMBIENTES DE TRABAJO	
Medio ambiente de trabajo	27
Preferencia de Ambientes de Oficina	31
MÉTODO	37
RESULTADOS	59
DISCUSIÓN	77
CONCLUSIONES Y RECOMENDACIONES	87
BIBLIOGRAFÍA	91
ANEXOS	96

ÍNDICE DE TABLAS Y FÍGURAS

Tabla 1. Dimensiones de la preferencia ambiental.	17
Tabla 2. Características de la oficina preferida.	32
Tabla 3. Características de la oficina no preferida.	33
Tabla 4. Distribución de la muestra del estudio.	43
Tabla 5. Distribución de los elementos del instrumento inicial	
clasificados por dimensiones.	47
Tabla 6. Distribución de los elementos del instrumento definitivo	
clasificados por dimensiones.	50
Tabla 7. Correlaciones de los puntajes de importancia para la	
fotografía más preferida con los de la menos preferida.	52
Tabla 8. Correlaciones de los puntajes de agrado e importancia	
para la fotografía más y menos preferida.	53
Tabla 9. Medias de los puntajes de la escala de agrado e	
importancia en la fotografía más preferida.	53
Tabla 10. Medias de los puntajes de la escala de agrado e	
importancia en la fotografía menos preferida.	54
Tabla 11. Diferencias de media de los puntajes de	
importancia de las dimensiones de la fotografía más preferida.	59
Tabla 12. Diferencias de media de los puntajes de	
importancia de las dimensiones de la fotografía menos preferida.	61
Tabla 13. Diferencias de media en control de iluminación importancia	
entre los grupos profesionales para la fotografía preferida.	65
Tabla 14. Diferencias de media en ventilación importancia entre	
los grupos profesionales para la fotografía preferida.	66
Tabla 15. Diferencias de media en personalización importancia entre	
los grupos profesionales para la fotografía preferida.	68
Tabla 16. Diferencias de media en privacidad importancia entre	
los grupos profesionales para la fotografía preferida.	69

Tabla 17. Diferencias de media en aglomeración importancia entre	
los grupos profesionales para la fotografía preferida.	70
Tabla 18. Diferencias de media en tamaño de las ventanas	
importancia entre los grupos profesionales para la fotografía preferida.	74
Tabla 19. Diferencias de media en tamaño de las ventanas	
importancia entre los grupos profesionales para la fotografía menos	
preferida.	76
Tabla 20. Características de los ambientes laborales preferidos por las	
mujeres, participantes de diferentes edades y de mayor experiencia	
laboral.	88
Tabla 21. Características de los ambientes laborales preferidos	
por las personas de las carreras humanistas y de ingeniería,	
arquitectura y afines.	89
Fig. 1 Medias de los puntajes de importancia de las dimensiones de	
la fotografía más preferida.	61
Fig. 2 Medias de los puntajes de importancia de las dimensiones de	
la fotografía menos preferida.	63
Fig. 3 Regresión de control de la iluminación (importancia) con las	
variables predictoras.	64
Fig. 4 Regresión de ventilación (importancia) con las variables	
predictoras.	66
Fig. 5 Regresión de personalización (importancia) con las variables	
predictoras.	67
Fig. 6 Regresión de privacidad (importancia) con las variables	
predictoras.	69
Fig. 7 Regresión de aglomeración (agrado) con las variables	
predictoras.	70
Fig. 8 Regresión de complejidad (importancia) con las variables	
predictoras.	72

Fig. 9 Regresión de tamaño de las ventanas (importancia) con las	
variables predictoras.	73
Fig. 10 Regresión de decoración (agrado) con las variables predictoras.	74
Fig. 11 Regresión de nivel de iluminación (agrado) con las	
variables predictoras.	75
Fig. 3 Regresión de tamaño de ventanas (importancia) con las	
variables predictoras.	76

ÍNDICE DE ANEXOS

ANEXO A: MUESTRA	96
ANEXO B: INSTRUMENTO INICIAL	98
ANEXO C: FOTOGRAFÍAS INTRUMENTO INCIAL	102
ANEXO D: INSTRUMENTO DEFINITIVO	105
ANEXO E: FOTOGRAFÍAS INSTRUMENTO DEFINITIVO	109
ANEXO F: INSTRU,MENTO SUGERIDO	112
ANEXO G: ANÁLISIS DESCRIPTIVO DE LAS VARIABLES	
PREDICTORAS	114
ANEXO H: ANÁLISIS DESCRIPTIVO DE LOS ELEMENTOS	
DE LA FOTOGRAFÍA PREFERIDA.	116
ANEXO I: ANÁLISIS DESCRIPTIVO DE LOS ELEMENTOS	
DE LA FOTOGRAFÍA MENOS PREFERIDA.	118
ANEXO J: CORRELACIÓN DE LOS PUNTAJES DE AGRADO E	
IMPORTANCIA DE LOS ELEMENTOS DE LA FOTGRAFÍA MÁS	
PREFERIDA	120
ANEXO K: CORRELACIÓN DE LOS PUNTAJES DE AGRADO E	
IMPORTANCIA DE LOS ELEMENTOS DE LA FOTGRAFÍA MENOS	
PREFERIDA	125
ANEXO L: CORRELACIÓN DE LOS PUNTAJES DE IMPORTANCIA	
DE LA FOTOGRAFÍA MÁS Y MENOS PREFERIDA	130
ANEXO M: ORDEN DE PREFERENCIA DE LAS FOTOGRAFÍAS	
POR DIMENSIÓN	135
ANEXO N: DIFERENCIA DE MEDIAS ENTRE LAS DIMENSIONES	
DE LA PREFERENCIA AMBIENTAL DE LA FOTOGRAFÍA MÁS	
PREFERIDA	137
ANEXO O: DIFERENCIA DE MEDIAS ENTRE LAS DIMENSIONES	
DE LA PREFERENCIA AMBIENTAL DE LA FOTOGRAFÍA MENOS	
PREFERIDA	140

ANEXO P: REGRESIÓN MULTIPLE DE LAS VARIABLES	
PREDICTORAS PARA LOS ELEMENTOS DE LA FOTGRAFÍA MÁS	
PREFERIDA	143
ANEXO Q: REGRESIÓN MULTIPLE DE LAS VARIABLES	
PREDICTORAS PARA LOS ELEMENTOS DE LA FOTGRAFÍA MENOS	
PREFERIDA	170
ANEXO R: ANOVA FACTORIAL DE LOS ELEMENTOS DE LA	
FOTGRAFÍA MÁS Y MENOS PREFERIDA	197

RESUMEN

La finalidad de la presente investigación es evaluar la importancia relativa otorgada a las dimensiones de la preferencia ambiental en un ambiente laboral en función del sexo, la edad, la experiencia laboral y la profesión.

Las dimensiones de la preferencia ambiental se definen según Fernández (1996) en cuatro, cada una de las cuales se subdivide en elementos, que es lo que permite la evaluación más detallada de un ambiente laboral:

- 1. Condiciones físicas: nivel de iluminación, control de iluminación y ventilación.
- II. Características psicológicas: personalización, aglomeración, privacidad.
- III. Características espaciales: complejidad, tamaño, coherencia y territorialidad.
- IV. Elementos estructurales: tamaño de ventanas, vista al exterior y decoración.

El estudio pretende en primer lugar, conocer si la evaluación de la importancia relativa que se otorga a las dimensiones de la preferencia ambiental varía, para posteriormente observar, sí la variación de ésta se encuentra en función del sexo, de la edad, de la experiencia laboral y/o de la profesión.

Para tal fin se construyó un instrumento, que consiste en cuatro fotografías a color, correspondientes a una de las cuatro dimensiones de la preferencia ambiental, que se evalúan con un formato tipo encuesta, donde se indica: (a) el orden de preferencia de las fotografías presentadas, (b) el nivel de agrado de una serie de elementos presentes, en el ambiente laboral escogido como preferido y no preferido, así como (c) la importancia atribuida a cada uno de dichos elementos al momento de evaluar un ambiente laboral cualquiera, como preferido o no preferido.

Se variaron y combinaron dos elementos de cada dimensión, en los estímulos fotográficos, conformando un grupo de 16 fotografías, cuatro para cada dimensión, con el fin de evaluar las cuatro dimensiones de la preferencia ambiental. Los elementos variados y combinados por dimensión son:

- I. Condiciones Físicas: nivel de iluminación y control de la iluminación.
- II. Características Psicológicas: personalización y privacidad.
- III. Características Espaciales: tamaño del espacio y complejidad.
- IV. Elementos Estructurales: tamaño de la ventana y vista al exterior

Los datos se obtuvieron de una muestra de 288 profesionales universitarios de ambos sexos, con edades comprendidas entre 23 y 58 años y una media de 34 años, pertenecientes a los siguientes grupos profesionales: (A) carreras humanísticas, (B) ciencias económicas y sociales, y (C) ingeniería, arquitectura y afines, y con una experiencia laboral entre 1 y 35 años con un promedio de 11 años.

Se obtuvo que la importancia relativa de las dimensiones de la preferencia ambiental sí varían; siendo para el ambiente laboral más preferido, en orden de importancia: las condiciones físicas, los elementos estructurales, las características espaciales y las características psicológicas. Y para el ambiente laboral menos preferido, las dimensiones en orden de importancia fueron: las condiciones físicas, las características espaciales, los elementos estructurales y las características psicológicas

Se demostró que las personas saben discriminar la evaluación del agrado, de la evaluación de importancia; de los elementos que pertenecen a un ambiente laboral.

Al estudiar si las variables sexo, edad, experiencia laboral y profesión influyen en la importancia relativa otorgada a las dimensiones, se observa que la profesión es quien genera más información en cuanto al estilo de preferencia de los ambientes laborales.

Por lo tanto a través de los resultados obtenidos, se pueden describir las condiciones que hacen más agradable el ambiente de trabajo, y son más importantes para escoger un ambiente laboral como preferido o no preferido según el sexo, la edad, la experiencia laboral y la profesión, del ocupante de la misma.

INTRODUCCIÓN

Uno de los principales problemas de investigación de la psicología ambiental es saber cómo el ambiente físico afecta a las personas, es decir, la forma en la cual se perciben los diferentes contextos físicos en los cuales las personas desempeñan sus actividades diarias, al mismo tiempo que se investiga cuál es la incidencia del ambiente sobre la conducta de los usuarios y la forma en que ellos intervienen en el funcionamiento de los espacios diseñados, estableciéndose así una relación de interacción con el ambiente.

En este sentido algunas características de los espacios físicos tales como, la privacidad, la aglomeración, el espacio personal y otras cualidades de los ambientes, son elementos que se toman en cuenta cuando se estudia la relación conducta—ambiente en el ámbito de la psicología ambiental; de igual manera estos características, son variables importantes en el área de la psicología industrial y organizacional, dada la influencia que éstas mismas pueden tener sobre el comportamiento de los trabajadores.

Por otro lado, la percepción de ambientes físicos concebida como un proceso psicológico general, es estudiada desde el punto de vista de la psicología ambiental con el fin de poder dar explicación a la relación de interacción entre el individuo y su ambiente físico inmediato, en este caso el ambiente de trabajo (interiores de oficina).

Esta investigación se dedicó al abordaje del fenómeno de la preferencia ambiental en contextos laborales, específicamente en interiores de oficina. La preferencia es un concepto utilizado en la psicología ambiental, que al ser estudiado en interiores de oficina, constituye una aplicación de la psicología ambiental al área de la psicología industrial y organizacional.

La preferencia ambiental de interiores de oficina está conformada por cuatro dimensiones básicas, éstas son: (a) las condiciones físicas, (b) las características psicológicas, (c) las características espaciales y (d) los elementos estructurales (Fernández, 1996). Lo que se pretendió a través de esta investigación fue la evaluación de cómo varía la importancia relativa dada a estas dimensiones en función de ciertas características sociodemográficas a saber; el sexo, la edad, la profesión y la experiencia laboral en interiores de oficina.

La información aportada por este estudio se puede utilizar en el área organizacional, en vista de que facilita las decisiones respecto a la disposición de las condiciones físicas del ambiente de trabajo, basado en la importancia relativa que estas mismas condiciones tienen para la preferencia de una población laboral específica.

La intención última de este trabajo fue, por tanto, contribuir al estudio científico de las relaciones entre la conducta y el ambiente, dado que posterior a la identificación de las dimensiones relevantes en interiores de oficina, éstas se pueden manipular y estudiar en relación con otras variables como la productividad, la satisfacción y la eficiencia de los sujetos que laboran en un contexto organizacional dado.

MARCO TEÓRICO

La psicología ambiental es un área aplicada de la psicología donde se ha estudiado cómo el medio determina el desenvolvimiento de las personas en sus actividades cotidianas, tales como estudiar, trabajar, jugar, etc. (Holahan, 1991). Tal como la conciben Bell, Fisher, Baum y Greene (1990), ésta especialidad "estudia la interacción entre el comportamiento y la experiencia con el ambiente construido o natural" (p. 7).

El estudio científico de la relación entre el ambiente físico y la conducta puede remontarse a principios de siglo, con las investigaciones de Gulliver en 1908 y Trowbridge en 1913 (cps. Bell y cols., 1990), quienes comenzaron a estudiar la percepción humana de estímulos ambientales como la luz, el sonido, el peso y la presión, entre otros. De acuerdo a Sommer (1996), la psicología ambiental tuvo como antecedente a quienes trabajaron con las teorías asociacionistas del aprendizaje, dentro de los cuales los estímulos del espacio adquieren especial relevancia. Entre estos autores se encuentra Tolman, con sus estudios de los mapas cognitivos del ambiente. Igualmente cabe mencionar a Lewin con su concepto del espacio vital y su serie de formulaciones teóricas acerca de la relación ambiente-conducta.

También la escuela de la Gestalt se considera un antecedente importante, siendo uno de sus principales aportes las leyes de la percepción: proximidad, cierre, semejanza, continuidad y simetría, además de sus conceptos de forma, isomorfismo y fuerza de los campos.

Con la influencia de estos antecedentes, la psicología ambiental surgió en los años 50 como una disciplina especializada dentro de la psicología, dedicándose al estudio del efecto de los elementos del ambiente físico sobre la conducta de las personas. Así mismo, estudió cómo las personas pueden

modificar el funcionamiento de los ambientes y espacios ya diseñados con el objetivo de lograr contextos físicos donde se facilite la funcionalidad del comportamiento (Sommer, 1996).

Entre los temas investigados destacan el uso del espacio en diferentes culturas (Hall, 1961; cp. Sommer, 1996), la imaginería de ambientes usando mapas mentales (Lynch, 1961; cp. Sommer, 1996) y el estudio del espacio en los hospitales psiquiátricos (Proshansky, Ittelson y el grupo City University of New York; cps. Sommer, 1996).

Más recientemente, una de las áreas que ha cobrado interés dentro de la psicología ambiental ha sido la de los espacios interiores, para explorar la percepción de los mismos y determinar las dimensiones relevantes de sus estímulos. En este sentido, resulta sumamente importante el abordaje del proceso perceptual que se lleva a cabo cuando el individuo se encuentra en un espacio.

PERCEPCIÓN

1. Definición

Una de las presunciones básicas de la psicología ambiental es que existe una interacción entre el ambiente físico y la conducta, es decir que se supone "una interrelación constante entre la conducta de los seres humanos y el ambiente que los rodea " (Fernández, 1996, p.3). Uno de los fenómenos que ocurre en el marco de esta interacción es el proceso perceptivo.

Forgus (1972) ofrece una conceptualización clásica de la percepción al referirse a ésta como "un proceso de extracción de información, una

información que es producto del vasto conjunto de energías físicas que estimulan los sentidos del organismo" (p. 13).

Es posible entonces hablar de la percepción como un proceso por medio del cual se conoce el ambiente físico a través de los sentidos, en otras palabras, la forma en que se extrae información para luego determinar el conocimiento sobre el ambiente y las actitudes tanto favorables como desfavorables respecto a éste (Holahan, 1991).

Como este proceso de extracción de información se refiere a todos los elementos del ambiente, las teorías que se han elaborado han hecho más énfasis en uno y otro tipo de estímulos, siendo los más pertinentes para esta investigación la percepción de ambientes físicos, que parte de los estudios realizados en el campo de la percepción de objetos.

2. Percepción de Objetos

Una de las formas en que se ha estudiado la percepción en psicología, es la experimentación en el laboratorio, haciéndose énfasis en las propiedades sensoriales de los estímulos, para finalmente formular una serie de leyes generales de cómo se da el proceso de percepción de objetos en los seres humanos.

La psicología de la Gestalt es una de las escuelas que más investigaciones ha realizado con objeto de dilucidar cuáles son las leyes de la percepción. En principio, este enfoque cuestionó el hecho de que las características físicas de los estímulos correspondiesen exactamente con la percepción que de ellos tienen las personas, considerando que el contenido de la experiencia sensorial es diferente a los contenidos verdaderamente presentes en el ambiente, lo que implica que no se puede percibir una realidad

objetiva externa en virtud de que el proceso de la percepción es engañoso (Henle, 1992).

A partir de este argumento, surgió la idea de la existencia de procesos mentales superiores que trabajan sobre los datos sensoriales desorganizados para producir una percepción completa. Es así como los principios de la Gestalt comenzaron a tener cabida en las teorías de la percepción. Una de las aproximaciones utilizadas es el análisis fenomenológico del ambiente, dicho análisis permite tomar en cuenta las evaluaciones y significaciones que los elementos del ambiente tienen para la persona que percibe. La psicología de la Gestalt se centra en la importancia del contexto para la determinación de la significación y funcionalidad de la percepción (Henle, 1992).

Más específicamente la teoría de la Gestalt indica que propiedades como; la iluminación, la brillantez, el color, y demás características de los objetos, se perciben de forma organizada en patrones holísticos; es decir que los atributos de un objeto no se perciben por separado sino de una manera organizada en un patrón total que es más que la suma de sus partes.

Conforme a la afirmación el todo es más que la suma de sus partes, se formulan cuatro principios gestaltistas de organización, ellos son: proximidad, semejanza, continuidad y cierre. La proximidad se refiere a que los elementos de un espacio que se encuentran más o menos cerca se perciben como relacionados entre sí. El segundo principio plantea que sobre la base de la semejanza de color o forma entre los elementos, es posible establecer una relación entre ellos. De acuerdo con el principio de continuidad se pueden agrupar varios elementos en una hilera o en una curva uniforme. Por último, por medio del cierre el individuo puede pasar por alto o cerrar pequeños espacios vacíos en una figura y verla como un todo (Holahan, 1991).

Jenkins (1978, cp. Henle, 1992) menciona un concepto más amplio relativo a la forma en cómo se perciben los objetos, este concepto es el de *fusión*; la cual se considera como un caso especial de coherencia, donde se reconoce al estímulo como parte de un sistema, pero porque se ha diluido o perdido en la percepción completa del evento.

Por otro lado, se encuentra el principio de *figura*—*fondo*, el cual establece que toda percepción se organiza dentro de una figura que destaca de entre un trasfondo. Otro principio importante es el de la *prâgnanz*, según el cual las imágenes adoptan la mejor forma posible en función de las circunstancias. Para obtener una buena forma es necesaria la coherencia y la constancia de un patrón visual. Por último, se menciona el principio de la *transposición*, el cual establece que por ser las formas isomórficas respecto a los patrones de estímulo, estas pueden sufrir grandes cambios sin perder su identidad (Chaplin y Krawiec, 1978).

En conclusión, según la gestalt, la experiencia perceptual está organizada en un todo significativo, en el cual se establecen las relaciones anteriormente mencionadas. Según lo expresado por Holahan (1991) estos principios son útiles pero no suficientes para explicar la percepción de ambientes, ya que minimizan la influencia que tiene el aprendizaje y otros procesos superiores sobre la forma en como el individuo percibe un ambiente físico completo. Por esta razón, luego de haber expuesto los principios generales de la percepción de objetos, se detallan las teorías que dentro de la Gestalt han contribuido al estudio de la percepción ambiental.

3. Percepción de Ambientes

Para el abordaje de la percepción de los ambientes molares y complejos, los psicólogos ambientales han empleado como referencia la teoría ecológica

de Gibson y la teoría probabilista de Brunswik, ya que estas teorías permiten destacar el papel activo del individuo ante el ambiente.

1. La teoría ecológica de Gibson. Este autor plantea la percepción del ambiente como un producto de las características ecológicas de la estimulación ambiental, argumentando que la percepción ambiental es el resultado directo de la estimulación que llega al individuo desde el ambiente, y que en el significado que éste le adjudica no intervienen los procesos de reconstrucción y representación. Esto, sin embargo, no significa que no se tome en cuenta el papel del aprendizaje, ya que este autor considera que:

mediante la experiencia ambiental el individuo aprende a discriminar más variables de estimulación ambiental y a distinguir las más significativas. Así por medio del aprendizaje, el individuo que percibe es capaz de lograr un cuadro cada vez más preciso del ambiente. (Gibson, 1979; cp. Holahan, 1991, p. 58)

En cuanto a la percepción del espacio, Gibson propone que una persona está en contacto con su ambiente y que la información que obtiene del mismo es producto de la actividad y la relación entre ese individuo y su medio. Por ello afirma que en primer lugar se percibe la persistencia o constancia de los lugares, objetos y sustancias; en segundo lugar, se perciben los cambios; y, en tercer lugar, se perciben las actividades de las personas en el medio. Finalmente, todo lo anterior contribuye a que el individuo se forme una percepción global del espacio (Hagen, 1992).

Adicionalmente, para tratar el problema del significado del ambiente, Gibson formuló el concepto de affordances, que hace referencia a la complementariedad que existe entre el individuo y su medio ambiente, en el sentido de qué es lo que le ofrece el ambiente al individuo para lograr o no su bienestar. Esto permite entender al contexto desde un punto de vista

donde se admite la reciprocidad existente entre la persona y su ambiente (Hagen, 1992).

2. La teoría probabilista de Brunswik. A diferencia de Gibson, quien establece que existe una relación directa entre la percepción y la estimulación, Brunswik propone que la información sensorial que proviene del ambiente y llega al individuo, no guarda una relación perfecta con el ambiente real, dado que el ambiente es ambiguo y tiene formas engañosas para el individuo. Ante tal ambigüedad el observador realiza un juicio probabilista sobre cuál pudiera ser la mejor apreciación acerca de la verdadera naturaleza del ambiente. En relación a la precisión de estos juicios de probabilidad, el individuo lo que hace es ensayar una serie de acciones en el ambiente y evaluar sus consecuencias funcionales (Brunswik, 1969; cp. Holahan, 1991).

Las dos teorías presentadas aportan importantes señalamientos relacionados con: (a) el papel de la experiencia ambiental, (b) la percepción de las actividades de las personas en un ambiente, (c) la reciprocidad entre el ambiente y la persona, y (d) la aproximación tentativa del individuo basada en su experiencia previa con otros ambientes.

Ittelson (1973, 1978) resaltó la aplicabilidad de estos señalamientos respecto al proceso de percepción para la psicología ambiental, este autor mostró que la percepción global del ambiente incluye componentes cognitivos, afectivos, interpretativos y evaluativos, que operan al mismo tiempo en los diferentes sentidos. La percepción del ambiente incluye la valoración de los elementos, el determinar cuáles son buenos y malos, y la indicación de la calidad percibida de un ambiente como una respuesta de percepción global. En efecto, los componentes afectivos y evaluativos son las raíces de la actitud que se tiene ante un ambiente.

Además de los componentes cognitivos, afectivos y evaluativos de la percepción ambiental, existen otros componentes importantes para la experiencia perceptual, estos componentes son, las expectativas e influencias socioculturales, las cuales contribuyen a la construcción de significados y la importancia o relevancia de cierto tipo de estímulos para la persona, influyendo de esta manera en la probabilidad de poder captar el mismo (Ittelson, 1978).

Según Salazar y cols. (1979), la percepción resulta afectada por estados permanentes y transitorios del sujeto, las expectativas respecto a las consecuencias reforzantes, y variables del contexto y la cultura; todo lo cual interviene en la forma que tiene el individuo para crear y representar su ambiente.

En este sentido se le confiere relevancia tanto a los factores del individuo como a los del contexto, puesto que se presupone la existencia de una transacción entre el hombre y su ambiente. Esta visión de transacción se destaca por ser una aproximación holista a la relación del organismo con su ambiente como unidad de análisis; ya que se supone que cualquier organismo está inextricablemente conectado y relacionado con su entorno (Wapner, 1995).

Biederman (1972; cp. Holahan, 1991) señala que en la percepción de los ambientes complejos y molares, las personas no solamente se encargan de percibir objetos, sino de colocarlos en situaciones o contextos significativos.

En esta investigación se estudió la percepción de un ambiente molar y complejo como lo es un interior de oficina, haciendo énfasis en las características del mismo y considerando la influencia de ciertas variables personales sobre la preferencia por un ambiente de oficina en particular.

PREFERENCIA AMBIENTAL

1. Definición

La preferencia ambiental se define como juicios evaluativos verbales que indican el grado de preferencia, agrado o gusto de un ambiente laboral específicamente un interior de oficina (Fernández, 1996).

Lang (1987) plantea que uno de los objetivos primordiales del diseño de ambientes es evocar una respuesta de placer en las personas que interaccionan con él. El estudio de la estética o preferencia ambiental es un intento de identificar, entender y, eventualmente crear las características ambientales que generan respuestas de placer; ya que en general, la calidad estética de una habitación puede afectar el tipo de evaluaciones que se realizan de ese ambiente, en el sentido de que los ambientes atractivos y decorados facilitan la sensación de agrado y confort a los individuos que se encuentran en ellos (Campbell, 1979 cp. Lang, 1987).

Sin embargo, según Lang (1987) en el proceso de planeación y diseño de ambientes no se ha prestado la debida atención a la conducta de los futuros ocupantes de ese espacio. En opinión de este autor, un mayor conocimiento del proceso por el cual las personas perciben el ambiente físico ayudaría a mejorar la calidad y utilidad del diseño ambiental.

Al respecto Ritterfeld y Cupchik (1996) mencionan que la mayoría de las investigaciones sobre diseños de interiores se han concentrado en la valoración social o significativa que el ambiente expresa. Estas son investigaciones del campo de la psicología que enfatizan los factores estructurales y los aspectos relativos a la estética, ya que se piensa que el valor estético es una cualidad inherente al objeto que influye sobre la preferencia hacia el mismo.

Los estudios de preferencia en ambientes interiores, desde el punto de vista de la psicología ambiental, dirigen su atención hacia la transacción entre el individuo y su ambiente. Lang (1987) señala que el planteamiento transaccional reconoce que las personas perciben los lugares de manera diferente dada la influencia de las experiencias personales.

En base a lo explicado anteriormente, se entiende la existencia de una vinculación entre las teorías de la percepción, la psicología ambiental y el diseño de interiores; siendo de interés para este estudio el enfoque de la psicología ambiental.

A continuación se explican brevemente algunas teorías del área de la psicología ambiental, que surgen del estudio de la preferencia de paisajes. Esto es importante debido a que el abordaje de la preferencia de ambientes construidos, en este caso el ambiente laboral, está precedido por los estudios sobre estética y preferencia de ambientes naturales.

2. Preferencia de Paisajes

Se parte de una consideración por parte de los diseñadores, los planificadores y la comunidad en general, respecto a los cambios de los ambientes naturales y el efecto importante que dichos cambios tienen sobre los seres humanos.

Las investigaciones en esta área se dividen, según Bell y cols (1990), en tres categorías: (a) el avalúo descriptivo de una vista-paisaje, que incluye los diseños tradicionales de cómo modificar y embellecer un terreno; (b) el avalúo físico-perceptual de un paisaje, el cual enfatiza en la identificación de las características del ambiente físico que pueden estar relacionadas

estadísticamente con juicios de preferencia o calidad ambiental; y, (c) la aproximación psicológica que consiste en estudiar las características de los perceptores y sus procesos psicológicos, o las cogniciones, y cómo influyen en el juicio estético o preferencia ambiental.

En referencia a estas dos últimas categorías se tiene que; en la aproximación físico-perceptual a la valoración de una escena, un grupo de expertos o alguna persona cuantifica las características físicas de una escena y, mediante técnicas estadísticas; determina cuál es el grado en que esas características llevan a una evaluación negativa o positiva de la calidad del ambiente.

Por su parte, la aproximación psicológica a la valoración del ambiente, se refiere más a la estructura que al contenido, pues a partir de elementos específicos del espacio se ve cómo están organizados y relacionados entre sí. Las mediciones de estos factores se obtienen a través de los juicios subjetivos de las personas a quienes se encuesta. Bell y cols. (1990) señalan que existen dos esquemas para abordar este estudio psicológico, ellos son:

1. La estética de Berlyne. Hay dos nociones fundamentales en esta aproximación: (a) las propiedades comparativas de los estímulos y (b) la exploración específica vs. la diversa. La primera noción se refiere a aquellas propiedades de los estímulos ambientales que elicitan respuestas comparativas o investigadoras, producto de un conflicto perceptual que lleva a la comparación de las propiedades del estímulo con algún otro estímulo pasado o presente para la resolución del conflicto. Las propiedades comparativas señaladas por este autor son las siguientes: (a) complejidad: variedad de componentes que conforman un ambiente; (b) novedad: características nuevas o inadvertidas, que contiene un ambiente; (c) incongruencia: desproporción entre los factores ambientales y

el contexto; y (d) sorpresa: no confirmación de las expectativas hacia un ambiente dado.

La segunda noción está referida al tipo de exploración ante un ambiente, la cual puede ser específica o diversa. La exploración específica se da cuando existe un interés por un estímulo en particular y el individuo lo explora para reducir la incertidumbre o satisfacer la curiosidad asociada a éste; en cambio la exploración diversa ocurre cuando el sujeto está subestimulado y busca un estímulo interesante en el ambiente.

2. El modelo de preferencia de Kaplan y Kaplan. A través de sus estudios Kaplan y Kaplan (1975, 1987) identificaron algunos factores que pueden ser utilizados para predecir preferencias de distintos tipos de ambientes, estos factores son: (a) coherencia: el grado en que una escena tiene organización y armonía, a mayor coherencia, mayor preferencia; (b) legibilidad: grado de diferenciación que capacita al observador para entender y categorizar el contenido de una escena, a mayor legibilidad mayor preferencia; (c) complejidad: número o variedad de elementos en un espacio, a mayor complejidad (en ambientes naturales) mayor preferencia; y, (d) misterio: grado en que el ambiente contiene información oculta que el sujeto trata de encontrar, a mayor misterio, mayor preferencia.

Kaplan y Kaplan (1975,1987) concluyeron que los seres humanos necesitan hacer predicciones rápidas y efectivas acerca de las características funcionales del ambiente y que las personas se sentirán atraídas por espacios donde perciban que podrán funcionar de modo más efectivo. Por ello el diseño de los espacios donde se desempeñan las personas determina de alguna forma los comportamientos que se ejecutarán dentro de ellos; por lo cual en la organización y la distribución del espacio

debe tomarse en cuenta la conducta a realizar, con el fin de lograr un mejor ajuste.

A parte de la estética de Berlyne y el modelo de Kaplan y Kaplan, Purcell (1986) formuló un importante modelo donde se relaciona la experiencia que se tiene del ambiente y la respuesta emocional ante el mismo. Según este modelo, la experiencia del ambiente es el resultado de un proceso de pareo de las características particulares disponibles en el presente y la representación mental de experiencias previas similares. Es decir, los atributos particulares de un ambiente son contrastados con el esquema mental. Según el autor, la respuesta afectiva ocurre en base a la congruencia o discrepancia entre los atributos presentes del ambiente y los del esquema prototipo.

En resumen, los dos esquemas planteados para el estudio de la preferencia y el modelo de Purcell, indican la existencia de una función comparadora entre los estímulos del presente y los del pasado, es decir que el individuo cuando explora un ambiente es capaz de realizar procesos de orden superior y contrastar su ambiente ideal con el ambiente que se le presenta actualmente. Así mismo se sugiere que la presencia de ciertas características en los ambientes puede predecir que tan preferidos serán éstos, conforme posean o no estas cualidades.

Esto tiene relevancia para los ambientes laborales dado que estos poseen diferentes atributos que la persona puede comparar, así también la percepción de global de un ambiente de oficina involucra un proceso de comparación, donde la persona contrasta un ideal de ambiente laboral con el ambiente presente, teniendo en cuenta además las experiencias previas con otras oficinas.

En el siguiente apartado se especifican cuáles son las características y los atributos de los ambientes laborales que las personas pueden contemplar en el proceso de comparación que realizan, a fin de formarse un juicio de agrado o desagrado.

3. Dimensiones de la Preferencia en Ambientes Laborales

Según Robbins (1996), el ambiente físico de trabajo tiene mucho que ver con el comportamiento de las personas, este autor hace mención de ciertos factores tomados en cuenta para aumentar o mantener la productividad dentro de ciertos límites, o para favorecer o regular las relaciones entre los trabajadores. Entre estos factores se encuentran: (a) el tamaño y la distribución del espacio físico de trabajo, (b) la disposición del equipo, (c) control de los niveles de iluminación y, (d) el nivel de ruido.

Un estudio sistemático de estos factores del ambiente físico es el realizado por Fernández (1996), quien exploró las dimensiones del ambiente físico que elicitan la preferencia ambiental en interiores de oficina. Para su estudio la autora partió del enfoque teórico de la psicología ambiental y se centró en la percepción holística de ambientes físicos de trabajo, con el fin de explorar las dimensiones de la preferencia. Para ello, Fernández (1996) trabajó con fotografías como material estimular, ya que en los estudios de preferencia éste es el método comúnmente empleado (Hull y Stewart, 1992; Nasar, 1983; Shafer y Richards, 1974; Shuttleworth, 1980). Al respecto se ha comprobado que la presentación de fotografías a color es válida para este tipo de estudios (Shuttleworth, 1980; Hull y Stewart, 1992).

Fernández (1996) diseñó un instrumento ad hoc que contaba con seis fotografías a color de interiores de oficina, en base a las cuales los participantes

expresaban el grado de preferencia hacia cada uno de esos ambientes, y luego explicaban por escrito las razones que justificaban dicha preferencia.

En base a un análisis de categoría de esas razones, Fernández (1996) planteó la existencia de cuatro dimensiones que elicitan juicios de preferencia, agrado o gusto por ambientes de oficina. Estas cuatro dimensiones son: (a) condiciones físicas, (b) características psicológicas, (c) características espaciales, y (d) elementos estructurales; cada una de las cuales está conformada por los elementos que se presentan en la tabla 1.

Tabla 1.

Condiciones Físicas	Características	Características	Elementos
	Psicológicas	Espaciales	Estructurales
lluminación	Comodidad-	Espacio	Ventanas
Nivel	Incomodidad	Tamaño	Presencia
Dirección		Para materiales y	Tamaño
Tipo	Personalización	Equipo	Apertura
Control		Para atender visitas	Vista al exterior
	Privacidad	y moverse dentro de la	
Ventilación		oficina	Decoración
Adecuación.	Aglomeración		General
Tipo		Complejidad	Vegetación
	Aspecto		Objetos
Sonido		Densidad	decorativos
	Distracción-	The same of the sa	
Temperatura	Concentración	Individual- compartida	Mobiliario
			Suficiencia
Limpieza	Comunicación con	Coherencia	Adecuación
The state of the s	otros		Funcionalidad
		Distribución del espacio	Tipo
	Adecuación a la		Estado
	función	Territorialidad	
		The state of the s	Cubrimiento del piso
	Color	Localización geográfica	
		Tipo de oficina	

3.1 Dimensión Condiciones Físicas. Esta dimensión se encuentra compuesta por los siguientes elementos: (a) Iluminación, (b) Ventilación, (c) Sonido, (d) Temperatura, y (e) Limpieza.

El elemento *lluminación* a su vez se subdivide en: (a) nivel de iluminación, que se refiere al grado de iluminación en un ambiente determinado, hablándose de mala iluminación vs. buena iluminación, clara vs. oscura, etc; (b) dirección de dónde proviene la luz, se refiere a si ésta llega por el lado derecho o izquierdo, de frente o detrás; (c) tipo de iluminación, si ésta es luz natural o artificial; y, (d) control de iluminación, que es la posibilidad de que el ocupante de la oficina pueda controlar la entrada de luz, por medio de una cortina o persiana (Fernández, 1996).

La ventilación incluye: (a) adecuación, se refiere a que tan adecuada se considera la ventilación de un ambiente particular; y, (b) tipo de ventilación, si la ventilación es natural o artificial.

Por otro lado, el *sonido* es definido por Fernández (1996) como un continuo que va desde el ruido excesivo hasta el silencio, aquí se incluyen los ambientes musicales.

En lo que respecta a la *temperatura*, ésta resulta agradable para trabajar cuando es media, existiendo disgusto por ambientes muy fríos o calientes. Por último se encuentra la *limpieza*, la cual es definida como un continuo que va desde lo sucio hasta la pulcritud del ambiente.

Todos estos elementos se consideran factores que influyen en el rendimiento y la satisfacción laboral.

3.2 Dimensión Características Psicológicas. Esta dimensión se encuentra constituida por los elementos: (a) comodidad-incomodidad; (b) personalización, (c) privacidad, (d) aglomeración, (e) aspecto, (f) distracción/concentración, (g) comunicación con otros, (h) adecuación a la función, e (i) el color.

Con respecto a la comodidad-incomodidad, Fernández (1996) señala una distinción entre la comodidad del ambiente en general y la comodidad del mobiliario, siendo importante la comodidad de la silla donde se trabaja. En referencia a la comodidad y el ambiente laboral, Oborne y Gruneberg (1983) señalan que éste es un concepto subjetivo y de difícil determinación, ya que generalmente tiende a definirse por las cualidades negativas, es decir, por lo contrario a la comodidad.

Por su parte, la *personalización* se refiere a la presencia o no de objetos personales que permitan identificar quién es el ocupante de una oficina (Fernández, 1996). Investigaciones como las de Campbell (1979; cp. Bell y cols., 1990) y Maslow y Mintz (1986; cp. por Bell y cols., 1990) indican una gran cantidad de razones por las que las personas quieren decorar y personalizar su ambiente de trabajo, entre ellas está el que identifiquen que ese lugar les pertenece, hacer más placentera la estadía y proyectar algunos de los sentimientos, metas y valores de las personas que ocupan ese espacio. Estos investigadores concluyeron que las personas se sienten mejor en habitaciones agradables y placenteras que en habitaciones feas y rígidas, y el buen humor que esto genera aumenta la tendencia de las personas a ayudarse unas a otras.

En lo que respecta a la *privacidad*, ésta puede ser tanto visual como auditiva, y se refiere a la posibilidad de no ser visto ni oído por las demás personas, siendo un aspecto importante en la escogencia de una oficina. Al respecto, Lang (1987) señala que la privacidad es importante en términos de la relación establecida entre un individuo o grupo y el resto de la sociedad. El tipo y grado de privacidad deseado depende del patrón de conducta, el contexto cultural, la personalidad y las aspiraciones del individuo involucrado. El uso de paredes, pantallas, delimitaciones reales e imaginarias del territorio y distancias,

son mecanismos para alcanzar la privacidad, los cuales se pueden controlar y manipular.

En esta línea, Newell (1994) propone un modelo sistémico de la privacidad, concibiéndola como un sistema abierto y estacionario del individuo humano, donde influyen diversas condiciones tanto internas como externas. Para este autor, la privacidad se constituye pues en una condición interactiva entre el individuo y su ambiente; que cumple con cuatro funciones: (a) autonomía, (b) autoevaluación, (c) descarga emocional, y (d) protección de la comunicación.

Este autor explica que ante demandas sociales y cognitivas del medio, que pueden sobrepasar la capacidad de respuesta del individuo, la privacidad cumple con la función de prevenir la ocurrencia de una sobrecarga a nivel congnitivo y, probablemente, a nivel afectivo durante estados de ansiedad, ya que el individuo limita la cantidad de información que le impacta. Es decir, la privacidad es un elemento psicológico que influye en las respuestas del individuo al medio y es un elemento a considerar cuando se estudia el comportamiento de los individuos en su ambiente físico de trabajo.

También respecto a la privacidad, Block y Stokes (1989) indican que las oficinas no privadas disminuyen la satisfacción laboral, pero, incrementan el desempeño al producir un efecto de facilitación social. A su vez, estos autores hipotetizaron cierta interacción entre el género y la introversión-extroversión con la complejidad de la tarea y la privacidad. En este sentido, hallaron que las personas que trabajaban en oficinas privadas realizando tareas complejas estaban más satisfechas con la privacidad. Por otro lado, encontraron que el efecto de la facilitación social era notable cuando las personas trabajaban en un ambiente no privado, particularmente cuando se trataba de hombres introvertidos que realizaban tareas simples.

El siguiente elemento que forma parte de las características psicológicas es el de la *aglomeración*, ésta tiene que ver con "la sensación o impresión subjetiva que produce el ambiente (....) la sensación de encierro, aislamiento, rigidez, etc." (Fernández, 1996, p. 58), también se entiende como la percepción de falta de espacio.

El elemento de *aspecto* está conformado por "adjetivos como flexible, adaptable, moderno, sobrio, etc., en el caso de los ambientes preferidos, y adjetivos como informal, secretarial, cosificado, monótomo, etc., en el caso de los ambientes no preferidos" (Fernández, 1996, p. 58).

Otro elemento que también se incluye dentro de la dimensión es la posibilidad de distracción—concentración, que ofrece un ambiente, "va desde aquellos ambientes donde se considera que el ocupante tiene muchas posibilidades de distraerse, hasta aquellos que se consideran aptos para concentrarse en la actividad que se está realizando" (Fernández, 1996, p. 58).

La comunicación con otros tiene que ver con la posibilidad o no de que en una oficina sus ocupantes se comuniquen con sus compañeros o trabajen en equipo. En ocasiones, es práctico tener oficinas compartidas, bien sea por el trabajo en equipo a realizar, o porque facilite la comunicación (Nasatir, 1997).

Por otra parte, la adecuación a la función se define como el grado en que una oficina determinada se adecua a la actividad laboral que allí se realiza (Fernández, 1996).

Por último, en referencia al color, se tiene que es importante tomar en cuenta los colores que están presentes en el ambiente y la percepción y

atribución dada a los mismos. De acuerdo con Fernández (1996), uno de los colores menos preferido por las personas es el blanco.

3.3 Dimensión Características Espaciales. Los elementos que la conforman son los siguientes: (a) espacio, (b) complejidad, (c) densidad, (d) oficina individual-compartida, (e) coherencia, (f) distribución del espacio, (g) territorialidad, (h) localización geográfica, e (i) tipo de oficina.

El espacio es definido por Fernández (1996) como las dimensiones de la oficina que incluyen el espacio para trabajar, para los materiales y equipos, para recibir visitantes, y para poder movilizarse cómodamente dentro de la misma.

La complejidad se concibe como un continuo que va desde los ambientes considerados como sencillos hasta aquellos recargados, es decir con excesivo número de elementos.

Con respecto a la *densidad*, ésta es una medida física, y se refiere al número de personas por unidad de área.

En relación con las oficinas compartidas vs. las individuales, Fernández (1996) plantea que los individuos prefieren las oficinas que están ocupadas por una sola persona, que aquellas compartidas por dos o más personas, independientemente del tamaño del espacio.

En cuanto a la coherencia, ésta varía en un continuo que va desde las oficinas donde los objetos se encuentran en su lugar y están organizadas hasta las desordenadas (Fernández, 1996). La distribución del espacio se refiere a la manera en que está dispuesto el mobiliario dentro de la oficina (Fernández, 1996).

Con respecto a la *territorialidad*, ésta es definida como la existencia o no de límites claros entre un puesto de trabajo y otro Sundstrom (1986 cp. Bell y cols., 1990), sugiere que el hecho de que se trate al ambiente de trabajo como un territorio está relacionado con la vinculación que se ha establecido con el mismo, el control que se percibe sobre éste y la responsabilidad ante él. Por ello, los individuos colocan signos personales que los diferencien de otros. Los trabajadores prefieren territorios bien definidos, pues el espacio es un símbolo de status dentro de las organizaciones, a mayor jerarquía más amplio, privado e importante es el territorio.

La territorialidad también puede vincularse con lo que se ha denominado como espacio personal, el cual según Oborne (1982) se define como un área con límites invisibles que rodea al cuerpo de la persona donde los intrusos no pueden penetrar. Existen diferentes niveles de límites según las distancias que se establecen, estos niveles son: (a) distancia pública, (b) distancia social, (c) distancia personal, y (d) distancia íntima. La importancia dada a estas distancias radica en que a solo cierto tipo de personas se les está permitido penetrar en cada área o espacio. En el ambiente de trabajo generalmente existe la distancia social.

Oborne (1982) plantea que lo importante en el diseño de una oficina es que la persona tenga control y sienta que tiene la capacidad de introducir cambios en su ambiente laboral, lo cual sería posible a través de la personalización. Por su parte, cuando no hay privacidad, ni tampoco un territorio bien definido, generalmente las personas sienten que tienen menos poder para controlar su ambiente.

La localización geográfica se define como la ubicación que tiene la oficina con respecto al resto del espacio que la rodea, hay oficinas que se encuentran en una esquina, o que son de difícil acceso (Fernández 1996). Por

último, el *tipo de oficina*, se refiere específicamente a que la oficina sea o no tipo cubículo (Fernández 1996).

3.4 Dimensión Elementos Estructurales. Esta dimensión contiene los siguientes elementos: (a) ventanas, (b) mobiliario, (c) decoración, y (d) cubrimiento del piso.

En relación con las ventanas, su presencia, el hecho de que sean amplias y que tengan vista al exterior preferiblemente hacia un paisaje natural, son características preferidas por las personas (Fernández 1996).

Un apoyo y explicación plausible para la preferencia de oficinas con ventanas que provean una vista panorámica la aportan Tennessen y Cimprich (1995) en su estudio sobre los efectos de una vista a la naturaleza en la Estos autores señalan que bajo las demandas crecientes de atención, la capacidad de los individuos para mantener la atención focalizada se fatiga y que en este momento la capacidad de atención focalizada puede ser restaurada con la simple dirección de la vista a alguna escena natural. El estudio de estos autores exploró la capacidad para mantener la atención de estudiantes que tenían dormitorios con ventanas con vista a paisajes naturales. seminaturales, y completamente artificiales. Sus resultados evidenciaron que las vistas naturales estaban relacionadas con un mejor rendimiento en las mediciones de atención. En relación con este resultado, Kaplan y Kaplan (1989; cps. Tennessen y Cimprich, 1995) sugieren que la exposición a ambientes naturales ayuda a mantener y restaurar la capacidad para dirigir la atención, focalizarla y concentrarse, lo cual cobra suma importancia en algunas actividades de oficina.

De acuerdo con Hollister (1968; cp. Bell y cols., 1990) la ausencia de ventanas reduce la eficiencia del trabajador y provoca fatiga, stress y sentimientos negativos hacia el ambiente de trabajo. Existen, sin embargo,

otros elementos diferentes a las ventanas, tales como: otros objetos naturales por ejemplo plantas en la oficina o fotografías de ambientes naturales, que también permiten la restauración de la atención cuando la vista a una escena natural no es posible. En este sentido, Heerwagen y Orians (1986; cps. Tennessen y Cimprich, 1995) encontraron que en las oficinas sin ventanas, las pinturas o las fotos de paisajes, jugaban idéntico papel que las ventanas, y que en las oficinas donde no había ventanas era mucho más frecuente que se incluyesen afiches de paisajes y escenas naturales que afiches de paisajes urbanos.

Otro aspecto de la dimensión estructural es el de la decoración, la cual incluye tanto la decoración general que pueda tener una oficina, como la presencia de vegetación y/o objetos decorativos; concibiéndose como un continuo que va desde una decoración recargada y desagradable, hasta una agradable.

La presencia de elementos decorativos en una oficina ha sido investigado en relación con la productividad. En este sentido, Larsen, Adams, Deon, Kweon y Tyler (1998) hallaron que la presencia de plantas en la oficina tenía efectos positivos sobre la productividad, la percepción de desempeño y la actitud frente al espacio. Pero, que había un límite para dicha influencia positiva, puesto que un número excesivo de plantas tenía un efecto perjudicial. De hecho Larsen y cols. (1998) observaron una disminución de la productividad a medida que se incrementaba el número de plantas en la oficina, Isen (1993; cp. Larsen y cols. 1998) explica que esto se debe a la posibilidad de distracción visual que surge por la presencia de un número excesivo de plantas; además del efecto negativo que tuvo un excesivo número de plantas sobre la productividad, los autores también hallaron una relación entre el número de plantas, el nivel de dificultad de la tarea y el estado de ánimo. En este sentido los autores llegaron a la conclusión de que un moderado número de plantas en

la oficina (7,2% del espacio) puede contribuir a la relajación y a la creatividad, pero, cuando se trata de tareas de naturaleza repetitiva o tareas donde se demanda atención focalizada, se genera más bien un efecto distractor; por último según el análisis cualitativo de las respuestas de los sujetos, Larsen y cols. (1998) constataron que la presencia de plantas en la oficina propiciaba una percepción del ambiente como atractivo y cómodo.

Cuando se habla del elemento de comodidad de una oficina, el mobiliario es un elemento importante. De acuerdo con Fernández (1996) este elemento se encuentra subdividido en las siguientes subcategorías: (a) suficiencia del mobiliario, es decir suficiente o no para la labor que se realiza; (b) adecuación: si es adecuado o no; (c) funcionalidad: si es útil; (d) tipo: estilo del mobiliario; y, (e) estado del mobiliario.

Por último el *cubrimiento del piso* se refiere al tipo de recubrimiento que tiene el piso de la oficina, pudiendo este ser alfombras, granito, baldosas, etc. (Fernández, 1996).

En resumen, se tiene un número relativamente extenso de elementos que caracterizan de una forma más o menos completa los aspectos del espacio físico de un ambiente de oficina. En su mayoría, estos elementos han sido investigados en relación con la productividad y la satisfacción de los trabajadores, señalándose que el ambiente físico es importante para un buen desempeño en el área laboral. Razón por la cual resulta relevante estudiar cómo estos elementos físicos del ambiente de oficina se relacionan entre sí, de acuerdo a la importancia relativa de los mismos, aspecto este que constituyó uno de los objetivos de la presente investigación.

AMBIENTE DE TRABAJO

1. Medio Ambiente de Trabajo

La psicología industrial y organizacional se ha ocupado del estudio de las condiciones del ambiente de trabajo, cuya historia se remonta a 1900 con el comienzo de la Revolución Industrial, donde la seguridad, la salud del trabajador y la satisfacción en el puesto de trabajo, fueron tópicos que contribuyeron al auge de las investigaciones en esta área, las cuales se mantienen hasta la actualidad con el estudio del manejo de las nuevas tecnologías (Bell y cols., 1990).

El medio de trabajo se define como el "conjunto de factores en el ambiente físico y psicosocial que afectan la productividad, satisfacción, ausentismo y rotación de las personas que trabajan en una organización" (Yáber, Comunicación Personal, Mayo, 1996; cp. Fernández, 1996).

Teniendo en cuenta que el ambiente físico forma parte del medio de trabajo, tal como señala la definición anterior, es menester definir lo que se entiende por ambiente de oficina. Según el tipo de actividad, Pasquali (comunicación personal cp. Fernández, 1996) define a las oficinas como "aquellos ambientes laborales donde se realizan labores de tipo administrativo o burocrático, donde se trabaja mayormente con papeles, no con producción de objetos, piezas o instrumentos, sino que generalmente se ofrecen servicios y se presta asesoría en diferentes áreas" (p. 22). Poniendo más énfasis en el espacio, Parsons (1976) define al ambiente de oficina como el espacio grande o pequeño para una o varias personas que laboran en una división organizacional.

El número de ambientes físicos de oficina ha aumentado progresivamente y, a medida que esto ha ido sucediendo, se ha incrementado la atención prestada a las condiciones de trabajo en la oficina, y los impactos del ambiente laboral en la efectividad y productividad profesional (Wineman, 1982). En este sentido Farrenkopf (1980; cp. Wineman, 1982) indica que la satisfacción con el ambiente se encuentra estrechamente relacionada con la ejecución laboral, en tal sentido reporta que para los arquitectos y gerentes de empresas, es de especial importancia planificar y diseñar factores del ambiente tales como, el tamaño, el mobiliario y los equipos disponibles, así también los colores de la oficina y la disposición del arreglo interior del espacio.

Por su parte, la psicología industrial se dedica al estudio de las condiciones físicas y psicológicas del ambiente de trabajo, revisando los factores ambientales que inciden sobre los cuatro resultados organizacionales: la rotación, la satisfacción, el ausentismo y la productividad (Robbins, 1996). La psicología ambiental como un aporte a la psicología industrial, estudia cómo el ambiente físico de trabajo afecta a las personas, siendo la satisfacción y la preferencia algunas de las variables investigadas (Bell y cols 1990; Fernández, 1996).

En este sentido, Robbins (1996) reporta que "los administradores suelen tomar muy en cuenta las exigencias del trabajo, los requisitos de interacción formal y las necesidades sociales al tomar decisiones respecto de la distribución física del espacio, diseño interior, colocación del equipo y cosas semejantes" (p.723). También se conoce que las decisiones respecto al tamaño y a la distribución física del espacio de trabajo, la disposición del equipo, los niveles de iluminación y de ruido, entre otros, inciden sobre la interacción de los grupos de trabajo (Robbins, 1996). Quiere decir que el cambio en el ambiente físico se relaciona con el desempeño de los trabajadores, por tanto se

constituye en un área de estudio para la psicología, en lo referente al comportamiento de los mismos.

Partiendo del hecho de que en el área de la psicología industrial se han tomado en cuenta la disposición y los cambios en el espacio físico de trabajo para generar un efecto sobre la conducta de los trabajadores, resulta sumamente importante conocer cuáles son los principios que rigen este proceso de influencia del entorno físico. Desde el punto de vista de la psicología ambiental Gutheil (1992), plantea que esos principios son los siguientes: (a) la conducta en relación a cualquier contexto físico es consistente y perdurable en el tiempo, lo que implica la posibilidad de identificar patrones de conducta que caracterizan a ciertos ambientes y que pueden ser generalizables; (b) el contexto físico es un sistema abierto con propiedades cambiantes que está compuesto por diferentes factores que contribuyen a definir las propiedades físicas de un ambiente, como por ejemplo, la iluminación y la decoración; y (c) existe una interdependencia dinámica entre la conducta y el ambiente, por tanto cualquier cambio en alguno de estos componentes afecta al ambiente, lo cual da la posibilidad de que se puedan cambiar los patrones de conducta típicos.

Los principios anteriormente mencionados son importantes porque resaltan el papel que tiene el contexto físico en relación a un patrón de conducta definido, como lo es la emisión de un juicio de preferencia de ambientes de oficina, a su vez, permiten suponer que este patrón de preferencia es generalizable a otros ambientes laborales. También, plantean la posibilidad de distinguir de varios elementos que, en conjunto, contribuyen a una percepción global de la oficina. Al respecto es importante destacar que los diferentes elementos de las cuatro dimensiones de la preferencia encontradas por Fernández (1996) son una evidencia a favor del hecho de que el contexto físico laboral es un sistema integrado por varios factores. Por último, estos principios son relevantes para la presente investigación en virtud de que

permiten inferir que la combinación y cambios en los elementos de un ambiente de oficina contribuye a la diversidad de respuestas de las personas como consecuencia de esas variaciones.

Es importante señalar que los efectos del contexto físico se dan por la actuación conjunta y simultánea de dos categorías: (a) los aspectos concretos y (b) los aspectos simbólicos (Gutheil, 1992). Los aspectos concretos se refieren a los elementos reales que se encuentran en el ambiente, tales como el mobiliario, la vegetación, las ventanas, la vista a un paisaje natural, etc. Por su parte, los aspectos simbólicos se relacionan con el significado que tienen los aspectos concretos para una persona en particular, esto significa que ante un mismo estímulo, como por ejemplo la presencia de una vista a un paisaje natural, las personas pueden diferir en el grado de gusto o placer que ese elemento les produce.

De igual manera, las personas utilizan el espacio de manera diferente. Hall (1976; cp. Gutheil, 1992) utiliza los términos *Espacio de Rasgo Fijo* y *Espacio de Rasgo Semifijo* para describir esas diferencias. El primero se refiere a aquellas vías básicas de la organización de las actividades, incluye elementos propios de la edificación como lo son las paredes y sus divisiones internas; y el segundo término se refiere al mobiliario y equipo que las personas usan para organizar el espacio. Esta clasificación del espacio sugiere que una oficina tiene elementos que difieren en el grado de modificación que se pueda hacer de ellos. Así hay aspectos como la personalización, la cual es un elemento de la dimensión características psicológicas según Fernández (1996), que pueden ser modificados por el ocupante de la oficina; mientras que hay otros aspectos como el tamaño de las ventanas, perteneciente a la dimensión elementos estructurales que son fijos ya que forman parte de la construcción como tal.

Por último es importante mencionar que en un ambiente de trabajo se da en menor o mayor medida una interacción social entre sus miembros, y que en este contacto la disposición y apariencia del espacio físico también ejerce su influencia. Al respecto Osmond (1970; cp. Gutheil, 1992) formula dos conceptos que permiten clasificar los espacios interiores en dos grandes grupos: (a) aquellos que tienen una cualidad de bienvenida y la propiedad de incitar el desarrollo de relaciones interpersonales; y, (b) aquellos que parecen en contra de la formación de contacto. Este autor halló que los primeros son característicos de algunos hogares y de oficinas de profesionales como los trabajadores sociales; mientras que, los segundos son ambientes como las cárceles y los hospitales.

2. Preferencia de Ambientes de Oficina

En esta investigación se trabajará con el tipo de ambiente laboral que se ha denominado *interior de oficina*. De acuerdo con los resultados obtenidos por Fernández (1996), las características de las oficinas preferidas y de las no preferidas, organizadas según las cuatro dimensiones de la preferencia (física, psicológica, espacial y estructural), son las que se señalan en las tablas 2 y 3.

Tabla 2.

Características de la oficina preferida (Fernández ,1996, p.78)

Condiciones Físicas	Características	Características	Elementos
	Psicológicas	Espaciales	Estructurales
 Bien iluminada. Iluminación natural o combinación natural artificial. Adecuada dirección de la iluminación. Posibilidad de controlar la entrada de luz natural. Ventilación adecuada. Cualquier tipo de ventilación. Limpia. Silenciosa. Temperatura media. 	 Privacidad. Aspecto agradable. Adecuado al tipo de actividad laboral. Permita la concentración. Posibilidad de comunicarse con compañeros o equipo de trabajo. 	y para atender visitas y moverse Sencilla N° ocupantes proporcional al tamaño.	 Ventana abierta o con posibilidad de abrirse. Vista al exterior.

Tabla 3.

Características de la oficina no preferida (Fernández ,1996, p. 79)

Condiciones Físicas	Características	Características	Elementos
	Psicológicas	Espaciales	Estructurales
 Mal iluminada. Sólo iluminación artificial. Inadecuada dirección de la iluminación. Ventilación inadecuada. Sucia Ruidosa Temperatura extrema 	- Sin Privacidad. - Aspecto informal.	 Poco espaciosa en general, para materiales y equipo y para atender visitas y moverse. Recargada. Excesivo n° de ocupantes. Oficina compartida. Desordenada/ Desorganizada. Inadecuada distribución del mobiliario. Sin límites claros entre un puesto de trabajo y otros. Ubicada en una esquina, en un área de circulación, de difícil acceso o dispuesta en serie. Oficina tipo cubículo. 	cerrada y sin vista al exterior.

Adicional a las características que los sujetos consideraron como propias de la oficina preferida y de la no preferida, el análisis de las respuestas de los participantes del estudio de Fernández (1996) arrojó diferencias en la frecuencia con que se empleaban los elementos de las cuatro dimensiones según la edad y la profesión. Sin embargo Fernández (1996) no puede ser concluyente respecto al hallazgo de estas diferencias ya que, tanto la edad como la profesión no fueron variables controladas en su estudio.

En lo que respecta a la profesión, Fernández (1996) halló que, las personas cuya profesión pertenecía a las disciplinas de humanidades y educación, o arquitectura, urbanismo y diseño, mostraban una marcada no preferencia hacia el ambiente N° 5 de su estudio, y una marcada preferencia

hacia el ambiente N° 6. El análisis de las respuestas de los sujetos de estas profesiones clasificadas según las cuatro dimensiones de la preferencia puso de manifiesto que: (a) las condiciones físicas eran igualmente frecuentes para preferir o no preferir un ambiente laboral; (b) las características psicológicas eran más utilizadas para la no preferencia de un ambiente que para la preferencia, lo que significa que las personas están más seguras de rechazar que de aprobar los elementos que conforman esta dimensión; (c) contrario al caso anterior, las características espaciales se emplearon más en la preferencia que en la no preferencia, por tanto, los elementos que conforman esta dimensión facilitan el que las personas los escojan como agradables y deseables para su oficina, pero al mismo tiempo su ausencia no causa tanto desagrado como para no preferirlos; y, (d) igualmente que en el caso anterior, los elementos estructurales se utilizaron en mayor proporción para preferir que para no preferir un ambiente laboral.

Continuando con el análisis cualitativo según la profesión resultó que, en cuanto a la proporción de uso de cada una de las dimensiones para justificar la preferencia por un ambiente de oficina dado, la dimensión características espaciales era la más utilizada, seguida de los elementos estructurales, las condiciones físicas y las características psicológicas. Por su parte, para justificar la no preferencia, los participantes emplearon en mayor proporción las características espaciales, seguida de las características psicológicas, los elementos estructurales y las condiciones físicas. Todo esto permitió a la autora concluir que las características espaciales son, en proporción, las que más se emplean tanto para la preferencia como para la no preferencia de un ambiente laboral.

Esto último sugiere la posibilidad de que exista un patrón de respuesta específico para la preferencia y no preferencia de ambientes laborales. En relación con este punto, en la presente investigación se estudió la frecuencia de

empleo de las dimensiones para la preferencia y no preferencia de un ambiente laboral cualquiera, por medio de la importancia relativa dada a las mismas.

Por otro lado, en cuanto a la edad, Fernández (1996) observó que: (a) mientras que las personas de menor edad mostraban una clara preferencia por el ambiente N° 4 de su estudio, las personas de mayor edad mostraban una clara no preferencia hacia dicho ambiente; (b) las personas de mayor edad emplearon en la misma proporción las características espaciales y estructurales, para la no preferencia de ese ambiente, mientras que las personas de menor edad emplearon en mayor proporción las características espaciales para la preferencia de ese ambiente; y , (c) los de menor edad consideraron con más frecuencia las características psicológicas para preferir ese ambiente, que las personas de mayor edad.

Estos resultados sugieren una posible relación entre la edad y las diferencias de las proporciones de empleo de las características estructurales, las características espaciales y las características psicológicas. En la presente estudio, además de evaluar sistemáticamente esta posible relación , se estudió la posible relación entre la experiencia laboral en interiores de oficina y la importancia relativa dada a las dimensiones de la preferencia de ambientes de oficina.

En conclusión, resulta importante destacar la variabilidad de las respuestas respecto a un mismo ambiente según ciertas características personales. En el caso del estudio de Fernández (1996), estas características fueron la profesión y la edad. Esto puede ser explicado por el aprendizaje y las experiencias previas relacionadas con el ejercicio de la profesión y el curso de los años de existencia, a través de los cuales ocurre la exposición y experimentación de diferentes contextos físicos.

Como ya se mencionó anteriormente, el ambiente físico influye en la actividad cotidiana de trabajo, esto quiere decir que hay una relación entre las condiciones físicas de trabajo y las actitudes tanto positivas como negativas de las personas que trabajan en dicho ambiente, y que esto puede contribuir a la satisfacción de los trabajadores.

Este proceso de influencia se ejerce de manera bidireccional, ya que en la formación de un juicio de preferencia intervienen no sólo la oficina objeto de ese juicio, sino también las variables específicas de la persona que la percibe. En este sentido, lo que se pretendió con la presente investigación fue evaluar la relación entre la percepción de una oficina y la respuesta de gusto, agrado o preferencia por la misma.

La evaluación y significación de un ambiente de oficina y sus elementos es un ejemplo de la aproximación holista de la escuela de la Gestalt. En esta investigación se resalta el papel activo de las personas cuando perciben un ambiente molar y complejo, entendiendo que en la evaluación de los elementos que conforman las cuatro dimensiones de la preferencia lo que se pide al individuo es una aproximación probable acerca de cómo percibe esa oficina.

En el presente estudio se alude a las teorías contemporáneas de la Gestalt, se toman en cuenta los modelos de preferencia en el área de la psicología ambiental y se incluyen los estudios de los factores físicos del ambiente laboral que influyen en el comportamiento de los trabajadores. Todo esto con el fin de describir hasta que punto la edad, el sexo, la profesión y la experiencia laboral en interiores de oficina se relacionan con la importancia relativa que las personas otorgan a las dimensiones de la preferencia ambiental descritas por Fernández (1996).

MÉTODO:

1. Problema:

¿Cómo varía la importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de interiores de oficina en función del sexo, la edad, la profesión y la experiencia laboral en interiores de oficina?

2. HIPÓTESIS:

2.1 Hipótesis General:

La importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de interiores de oficina, variará en función del sexo, la edad, la profesión y la experiencia laboral en interiores de oficina.

2.2 Hipótesis Específicas:

- Las dimensiones del ambiente físico que elicitan la preferencia de interiores de oficina variarán en su importancia relativa.
- La importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de un interior de oficina, variará en función del sexo.
- III. La importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de un interior de oficina, variará en función de la edad.
- IV. La importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de un interior de oficina, variará en función de la profesión.
- V. La importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de un interior de oficina, variará en función de la experiencia laboral en interiores de oficina.

3. VARIABLES:

3.1 Variables Predictoras:

I. Sexo: género sexual al cual pertenece el participante.

Categorías: Masculino

Femenino

II. Edad: tiempo de vida en años, transcurrido desde el nacimiento del participante hasta la fecha de cumpleaños anterior a la fecha del estudio. Se manejó como variable continua dentro de la investigación, en el rango que va desde los 23 años hasta los 62 años.

III. Profesión: tipo de estudios formales realizados por el participante al nivel de pregrado.

Categorías: tres grupos diferentes de carreras profesionales.

Grupo A: Carreras Humanísticas. En este grupo estuvo compuesto por: Psicología, Comunicación Social, Educación, Filosofía y Letras.

Grupo B: Ciencias Económicas y Sociales. Este grupo estuvo conformado por: Administración, Antropología, Contaduría, Economía, Relaciones Industriales y Sociología.

Grupo C: Ingeniería, Arquitectura y afines. En este grupo se incluyeron: Arquitectura, Ingeniería y Urbanismo.

VI. Experiencia laboral en interiores de oficina: tiempo en años que el participante lleva trabajando en interiores de oficina. Se manejó como una variable continua.

39

3.2 Variable a Predecir:

Preferencia Ambiental de Interiores de Oficina:

Definición Constructiva: juicios evaluativos verbales que indican el grado de preferencia, agrado o gusto de un ambiente laboral, específicamente un interior de oficina (Fernández, 1996).

3.3 Variables a controlar en los estímulos fotográficos:

I. Dimensión Condiciones Físicas:

Nivel de Iluminación: grado de iluminación existente en el ambiente.

Categorías: Alto

Bajo

Control de la lluminación: posibilidad de controlar la entrada de luz natural a través de la presencia de una cortina o persiana que pueda ser manipulada por el ocupante de la oficina.

Categorías: Presencia de cortina o persiana

Ausencia de cortina o persiana

II. Dimensión Características Psicológicas:

Personalización: presencia de objetos personales que permiten identificar quién es el ocupante de una oficina.

Categorías: Personalizada

No personalizada

Privacidad: control selectivo del acceso a uno mismo o al grupo al que uno pertenece. Puede ser visual (posibilidad de no ser visto) o auditiva (posibilidad de no ser oído).

Categorías: Privada

No privada

40

III. Dimensión Características Espaciales:

Tamaño del Espacio: dimensiones de la oficina, incluye tamaño general de la oficina, espacio para materiales y equipo, y espacio para recibir visitantes y moverse dentro de la oficina.

Categorías: Grande

Pequeña

Complejidad: número de elementos presentes en el ambiente.

Categorías: Muchos

Pocos

IV. Dimensión Elementos Estructurales:

Tamaño de la Ventana: dimensiones de la ventana.

Categorías: Grande

Pequeña

Vista al Exterior: posibilidad de ver hacia un paisaje (natural o construido) a través de la ventana de la oficina.

Categorías: Con vista al exterior

Sin vista al exterior

4. Tipo de Investigación:

Esta fue una investigación ex post facto de campo, según Kerlinger (1988), el estudio de campo se caracteriza por ser una investigación científica que se enfoca al estudio de la relación entre las variables sociales y psicológicas, en un contexto natural, en este caso los lugares de trabajo de los individuos. Así mismo es determinante del carácter ex post facto, el hecho de que todas las variables predictoras de este estudio fueron atributivas, quiere decir que eran atributos ya dados en los individuos, específicamente el sexo, la edad, la profesión y la experiencia laboral en interiores de oficina.

5. Diseño

Es un diseño transversal, donde se estudiaron en un momento puntual las variables sexo (dos niveles), edad (variable continua), profesión (tres niveles) y experiencia laboral (variable continua) para ver su valor predictivo sobre la variable preferencia ambiental en interiores de oficina (Kerlinger, 1988). Este tipo de diseño permitió estudiar de forma simultánea las variables sexo, edad, profesión y experiencia laboral y conocer el monto de varianza explicada.

6. PROCEDIMIENTO:

6.1 Sujetos:

Los participantes de este estudio fueron 288 profesionales universitarios de ambos sexos, con edades comprendidas entre 23 y 58 años y una media de 34 años, pertenecientes a los siguientes grupos profesionales: (A) carreras humanísticas, (B) ciencias económicas y sociales, y (C) ingeniería, arquitectura y afines, y con una experiencia laboral entre 1 y 35 años con un promedio de 11 años. Los participantes laboraban en diferentes empresas del sector industrial y servicios, y de instituciones educativas, del área metropolitana de Caracas y del estado Aragua: Banco Unión SACA., CATIVEN Recursos Humanos, CANTV Caracas, Centro de Asesoramiento y Desarrollo Humano UCAB, COINSERCA, Colegio Nuestra Señora del Valle, Consejo Municipal de Maracay, Grupo ZUMA Administradores, Honeywell de Venezuela, KELLOG'S de Venezuela, MAVESA, División de Operaciones y Arquitectura METRO de Caracas CA., MINDUR Ministerio de Desarrollo Urbano, Museo de Arte Contemporáneo de Caracas Sofía Imber, Radio Móvil Digital de Venezuela y PLC de Venezuela.

La muestra total estuvo conformada por un 50,34 % de participantes de sexo masculino y un 49,66 % de sexo femenino. En cuanto a la edad, el 51,04% tenía entre 23 y 32 años; el 31,94% entre 33 y 42 años, el 14,24 % entre 43 y 52 años y el 2,78 % entre 52 y 63 años. Un 30,9% correspondía al grupo de carreras humanísticas, el 30,5% pertenecía al grupo de ciencias económicas y un 38,6%

al grupo de ingeniería, arquitectura y afines y en cuanto a la experiencia laboral el 62,85% tenía entre 1 y 10 años, el 24,65% entre 11 y 20 años y el 12,5% más de 20 años de experiencia laboral en interiores de oficina.

6.2 Diseño Muestral: el muestreo fue de tipo incidental dado que se tomó la muestra de trabajadores que se tenía al alcance cuando se visitaron las empresas.

La muestra se distribuyó de manera equitativa en las variables sexo y profesión, ya que el número de participantes se distribuye de manera similar entre las diferentes categorías que las componen. En cambio, en lo referente a las variables edad y experiencia laboral, se observó una distribución menos equitativa que la mayoría de los participantes tenía menos de 42 años de edad y una experiencia laboral menor a 20 años, lo cual resultó característico de las empresas que participaron en el estudio.

De igual manera, se observa una distribución equitativa del número de participantes por grupo de fotografías, específicamente, el grupo correspondiente a las condiciones físicas (I) representó el 27,08% de la muestra total, el de características psicológicas (II) el 25%; el de las características espaciales (III) el 24,3%, y el grupo de los elementos estructurales (IV) el 23,62%.

Todos estos datos se detallan en la Tabla 4, donde se señala la distribución de la muestra del estudio (Anexo A).

Tabla 4.

Distribución de la muestra del estudio.

Varia	ables	1	11	111	IV	Totales
Sexo	Hombres	43	27	43	32	145
	Mujeres	35	45	27	36	143
	23-32	48	27	43	29	147
Edad	33-42	22	29	17	24	92
	43-52	6	14	8	13	41
lang bar of the state of the st	53-62	2	2	2	2	8
Profesión	Grupo A	25	16	22	26	89
100	Grupo B	25	21	23	21	88
A. Carrier	Grupo C	30	35	25	21	111
	1-10	55	37	50	39	181
Experiencia	11-20	18	23	14	16	71
Laboral	21 ó más	5	12	6	13	36
	N Total	78	72	70	68	288

Es importante resaltar que con el fin de evitar el sesgo de las respuestas por alguna condición particular de una empresa, se controló el hecho de que hubiese participantes de las diferentes empresas dentro de una misma casilla, así mismo se le aplicaron los cuatro grupos de fotos al personal de una misma empresa, con el fin de evitar sesgos producto de la aplicación de un solo grupo de fotografías a todos los participantes de una misma empresa.

6.3 Técnica de recolección de datos:

Instrumento: se elaboró un instrumento ad hoc para la presente investigación, el cual consistió en la presentación a cada participante de cuatro fotografías a color, correspondientes a una de las cuatro dimensiones de la preferencia ambiental. Estas fotografías fueron evaluadas por cada participante utilizando un formato tipo encuesta, donde indicaron: (a) el orden de preferencia de las fotografías presentadas, (b) el nivel de agrado de una serie de elementos presentes en

dichos ambientes y, (c) la importancia atribuida a cada uno de dichos elementos al momento de evaluar un ambiente laboral cualquiera.

Se variaron y combinaron dos elementos de cada dimensión, conformando un grupo de 16 fotografías, cuatro para cada dimensión, con el fin de evaluar las cuatro dimensiones de la preferencia ambiental, el resto de los elementos se mantuvieron constantes. Los elementos controlados fueron los siguientes:

- I. Dimensión Condiciones Físicas: nivel de iluminación y control de la iluminación.
- II. Dimensión Características Psicológicas: personalización y privacidad.
- III. Dimensión Características Espaciales: tamaño del espacio y complejidad.
- IV. Dimensión Elementos Estructurales: tamaño de la ventana y vista al exterior.

De igual manera se mantuvieron constantes las siguientes condiciones:

- Misma perspectiva para todas las fotografías, es decir, tomadas aproximadamente desde la misma distancia.
- Todas las fotografías mostraban una visión amplia de la oficina, donde se observaban los elementos que conformaban ese ambiente particular: escritorio, silla, materiales y equipo, entre otros.
- 3. Dentro de un mismo grupo de fotografías, la decoración y apariencia de las oficinas fue similar.
- 4. Todas las fotografías pertenecían a un rango de estatus laboral intermedio.

Proceso de construcción del instrumento:

1. Se trabajó con un grupo inicial de 147 fotografías a color de interiores de oficina, de cuatro empresas dedicadas al sector servicios: (a) una agencia de publicidad, (b) un periódico, (c) una consultora en el área económica, y (d) una clínica privada. Las fotografías fueron tomadas con una Cámara Canon EOS 1000, con un lente Canon EF 28 mm f/2.8 y flash Hanimex PRO/550. Dichas fotografías fueron obtenidas en el estudio de Fernández (1996).

Se emplearon fotografías a color porque la utilización de este tipo de estímulos es frecuente en los estudios de psicología ambiental, ya que ésta es una forma válida de acceder a las respuestas de las personas a los ambientes, adicionalmente ofrecen como ventaja el hecho de que permiten controlar el estímulo ambiental y el abordaje de un extenso grupo de ambientes y personas (Hull y Stewart, 1992).

- Se acordaron los elementos que serían controlados en cada una de las fotografías y las condiciones que permanecerían constantes.
- Los investigadores procedieron a escoger, de entre el grupo de 147 fotografías obtenidas por Fernández (1996), aquellas que cumplían los criterios fijados en la fase 2.

Primeramente cada investigador seleccionó a ciegas las fotografías, luego se vació en un cuadro común las fotografías previamente escogidas por separado, resultando un total de 52 fotografías, de las cuales 12 pertenecían a las dimensiones Condiciones Físicas y Espaciales (I y III) y 14 a las dimensiones Características Psicológicas y Elementos Estructurales (II y IV).

A partir de dichas fotografías se seleccionaron en común acuerdo, aquellas donde estaban presentes o ausentes, según el caso, los elementos a controlar en el instrumento.

 Se conformó un grupo de cuatro fotografías por dimensión, resultando un total de 16 fotografías, codificadas de la siguiente manera:

Grupo I Dimensión Condiciones Físicas:

1₁ Iluminada ---- Con cortina

12 Poco iluminada ---- Con cortina

l₃ Iluminada ---- Sin cortina

I₄ Poco iluminada ---- Sin cortina

Grupo II Dimensión Características Psicológicas:

II₁ Privada----Personalizada

II₂ Privada----No Personalizada

II₃ No Privada----Personalizada

II4 No Privada----No Personalizada

Grupo III Dimensión Características Espaciales:

III₁ Grande----Muchos elementos

III₂ Grande----Pocos elementos

III₃ Pequeña----Muchos elementos

III4 Pequeña----Pocos elementos

Grupo IV Dimensión Elementos Estructurales:

IV₁ Vista al exterior----Ventana grande

IV₂ Vista al exterior ---- Ventana pequeña

IV₃ Sin vista al exterior ---- Ventana grande

IV₄ Sin vista al exterior ----Ventana pequeña

5. Se elaboró el instrumento inicial (Anexo B), de papel y lápiz, acompañado por el conjunto de 16 fotografías que se consideró que poseían las características precedentes (Anexo C). El instrumento constaba de una parte introductoria donde se informaba a la persona el objetivo de la investigación y la utilidad de su colaboración. Seguidamente, se presentaba la parte I donde se recogía la información necesaria sobre las variables predictoras (sexo, edad, profesión y experiencia laboral en interiores de oficina). Luego, en la parte II se le mostraba a la persona, el grupo de cuatro fotografías de una dimensión y se le pedía que ordenara los ambientes presentados desde el menos preferido hasta el más preferido. En las partes III y IV, se aplicaba un cuestionario, donde se le pedía al participante que evaluase primero la foto más preferida y luego la menos preferida, de las cuatro fotografías presentadas. La evaluación hacía

referencia a 15 elementos pertenecientes a las cuatro dimensiones de la preferencia que se presentan en la Tabla 5, definidos sucintamente, con el fin de proporcionar un marco de referencia al participante y estandarizar lo que se entendía por cada elemento a fines de esta investigación. La evaluación de cada uno de estos elementos, se realizaba con una escala tipo Lickert de ocho puntos de amplitud, que iba desde el extremo Desagrado hasta el extremo Agrado, de cada elemento en esa fotografía. Luego, mediante otra escala tipo Lickert de seis puntos de amplitud, se le pedía a la persona que señalara la importancia que le otorgaba a dichos elementos al momento de evaluar cualquier tipo de oficina en general, en una escala que iba desde el extremo Poco Importante hasta el extremo de Muy Importante. Se consideró importante colocar las escalas tanto de agrado como de Importancia porque no se poseía información a nivel teórico que avalará la inclusión de una sola de las mismas, ya que no había base para suponer para la evaluación del agrado de cada uno de los elementos en un ambiente laboral particular fuera independiente de la evaluación del nivel de importancia que tendría cada uno de ellos al momento de evaluar un ambiente laboral cualquiera.

Tabla 5.

Distribución de los elementos del instrumento inicial clasificados por dimensión

	Dimensión I		Dimensión II	Dimensión III Dimensión IV		Dimensión IV
•	Nivel	de	 Personalización 	Tamaño del	•	Tamaño de las
	iluminación		 Privacidad 	espacio		ventanas
•	Control de	la	 Aglomeración 	 Complejidad 	•	Vista al exterior
	iluminación			Coherencia	•	Decoración
•	Ventilación			 Densidad 	•	Cubrimiento del
				Territorialidad		piso.

6. Se aplicó individualmente el instrumento inicial, con la finalidad de que un grupo de personas, evaluara las fotos presentadas y emitiera su opinión acerca de características formales del instrumento tales como: longitud, tipo de formato, claridad de las instrucciones, etc., o acerca de cualquier otro aspecto considerado relevante en función del objetivo de investigación.

La muestra a la que respondió y emitió su opinión sobre el instrumento inicial, estuvo constituida por un total de 12 personas, 7 de sexo masculino y 5 de sexo femenino, a su vez 5 del grupo profesional A (carreras humanísticas), 5 del grupo profesional C (ingeniería, arquitectura y afines) y 2 del grupo profesional B (ciencias económicas). Los participantes de la aplicación del instrumento inicial tenían una edad mínima de 24 años y máxima de 62 años, con un promedio de 42 años, el tiempo mínimo de experiencia laboral en interiores de oficina fue de 2 años y el máximo 30 años, con un tiempo promedio de 16 años.

En base a los resultados de esta prueba se realizaron las siguientes modificaciones:

En cuanto a los aspectos formales:

- Se cambió en los datos de identificación de la Parte I el término experiencia laboral en interiores de oficina por tiempo aproximado que lleva trabajando en oficinas.
- 2. Se modificó la instrucción de la Parte II utilizando los números por los códigos (el número romano y el arábigo en subíndice).
- Se agregó un apartado que consistió en un ejemplo que permite modelar el patrón de respuesta deseado en las Partes III y IV.
- 4. Se cambió la redacción de las instrucciones de las Partes III y IV, para evitar la redundancia luego del ejemplo de respuesta incluido.
- 5. Se eliminó el ítem "densidad", ya que los participantes refirieron dificultades para contestar a éste, dado que no habían personas en las fotografías.
- 6. Se amplió la definición de "decoración" y de "tamaño del espacio".
- Se eliminó el ítem "cubrimiento del piso", porque no se apreciaba en todas las fotografías.

8. Se cambió el formato de presentación de los ítems, separándolos cada uno por un recuadro, y se agregaron flechas de señalización para los extremos de la escala de agrado-desagrado y de poca-mucha importancia.

En lo que se refirió a las Fotografías:

Se consideró necesario sustituir la fotografía l3 (ambiente iluminado y sin cortina) perteneciente a la dimensión condiciones físicas, la fotografía ll2 (ambiente privado y no personalizado) y la fotografía ll4 (ambiente no privado y no personalizado) pertenecientes a la dimensión características psicológicas, la fotografía lll4 (ambiente pequeño y de pocos elementos) perteneciente a la dimensión características espaciales, la fotografía lV1 (ambiente con vista al exterior y ventana grande) y la fotografía lV2 (ambiente con vista al exterior y ventana pequeña) pertenecientes a la dimensión elementos estructurales; con el fin de lograr un mejor ajuste a los criterios de selección de las fotografías, que aparecen en el apartado de técnica de recolección de datos.

7. En base a los resultados anteriores se elaboró el instrumento definitivo, de papel y lápiz (Anexo C), con un conjunto modificado de 16 fotografías (Anexo D). Este instrumento definitivo constó de una parte introductoria donde se informaba a la persona el objetivo de la investigación y la utilidad de su colaboración. Seguidamente se presentaba la parte I donde se recogía la información necesaria respecto a las variables predictoras (sexo, edad, profesión y tiempo aproximado que lleva trabajando en oficinas). Luego en la parte II, se le mostraba a la persona el grupo de cuatro fotografías de una dimensión y se le pedía que ordenara los ambientes presentados desde el menos preferido hasta el más preferido, colocando el código de la foto que se encontraba en números romanos con subíndice arábigo. La parte III constó de un ejemplo donde se modelaba el patrón de respuesta deseado en las partes subsiguientes. En las partes IV y V, se aplicó un cuestionario donde se pedía al sujeto que evaluara, primero, la fotografía más preferida y, luego la

menos preferida, de las cuatro fotografías presentadas. La evaluación se refirió a un total de 13 de los 15 elementos originales, ya que por motivos prácticos y como producto de las opiniones emitidas por los participantes del estudio piloto se eliminaron los ítems "densidad" y "cubrimiento del piso". Estos 13 elementos pertenecientes a las cuatro dimensiones de la preferencia ambiental se presentan en la tabla 6 y aparecieron definidos sucintamente en el cuestionario, con el fin de proporcionar un marco de referencia al participante y estandarizar lo que se entendía por cada elemento para fines de esta investigación.

Tabla 6.

Distribución de los elementos del instrumento definitivo clasificados por dimensión.

	Dimensión I		Dimensión II	Dimensión III Dime		III Dimensión IV				
•	Nivel	de	 Personalización 	•	Tamaño	del	•	Tamaño	de	las
	iluminación		 Privacidad 	е	espacio			ventanas		
•	Control de	la	 Aglomeración 	•	Complejidad		•	Vista al ex	terior	
	iluminación			•	Coherencia		•	Decoració	n	
•	Ventilación			•	Territorialidad					

Validez y confiabilidad

El instrumento posee validez de contenido, según Magnusson (1990) ésta consiste en "el grado en que la muestra de ítems del test es representativa de la población total" (p.160); en la presente investigación se mantuvo la validez por el proceso de elaboración del instrumento, que define la pertinencia de los estímulos fotográficos presentados (ítems), como la muestra representativa de los criterios planteados en cada dimensión de una población de fotos, este proceso se encuentra descrito en el proceso de construcción del instrumento mencionado anteriormente.

En cuanto a la confiabilidad, es importante resaltar que el instrumento construido para la presente investigación no es el estilo habitual de los utilizados en psicología, y debido a sus características, incluyendo tanto la estructura de la prueba como las características de los ítems en sí mismos, no es pertinente el cálculo de su confiabilidad.

Sin embargo, este tipo de instrumento es de uso frecuente dentro del área de la psicología Ambiental, área dentro de la cual se enmarca el presente trabajo de investigación, y donde no se acostumbra el cálculo de la confiabilidad de este tipo de instrumentos debido a sus características (Shuttleworth, 1980; Nasar, 1983; Shafer y Richards, 1974; Hull y Stewart, 1992;; Ritterfeld y Cupnick, 1996).

Cualquier intento de amoldar las características de dichas pruebas al cálculo de los coeficientes de confiabilidad sería muy costoso y difícil. Más específicamente, la heterogeneidad de los ítems impide el cálculo de la confiabilidad por método de división por mitades o de consistencia interna. El método de pruebas paralelas implicaría la escogencia de fotografías equivalentes a las utilizadas en este estudio, lo cual sería muy difícil de garantizar. Por último, el método de test - retest que en principio pudiera lucir como aplicable, en la práctica resulta poco factible debido a la gran dificultad que representa volver a contactar a todos los participantes en la muestra de este estudio, no sólo por el tipo de diseño muestral, sino por lo difícil que resultaría difícil. que resultaría realizarlo en el tiempo estipulado para la realización del presente trabajo.

Evaluación de las escalas del instrumento

Con el fin de determinar si la evaluación del agrado de cada uno de los elementos que constituyen el instrumento en un ambiente laboral particular, era independiente de la evaluación del nivel de importancia que tendría cada uno de ellos al momento de evaluar un ambiente laboral cualquiera (Escala de Agrado vs. Escala de Importancia) se realizaron los siguientes cálculos:

- Correlaciones de los puntajes de la Escala de Importancia de la fotografía más preferida con los puntajes de la Escala de Importancia de la fotografía menos preferida. (Tabla 7).
- Correlaciones de los puntajes de la Escala de Agrado con los puntajes de la Escala de Importancia, tanto para la fotografía más preferida como para la menos preferida (Tabla 8).
- Medias de los puntajes de las Escalas de Agrado e Importancia, tanto para la fotografía más preferida como para la menos preferida (Tabla 9 y 10).

Tabla 7.

Correlaciones de los puntajes de importancia para la fotografía más preferida con los de la menos preferida.

Elementos	Puntajes de Importancia
Nivel de iluminación	0.333**
Control de iluminación	0.313**
Ventilación	0.544**
Privacidad	0.438**
Personalización	0.508**
Complejidad	0.36**
Coherencia	0.139*
Tamaño	0.447**
Aglomeración	0.477**
Territorialidad	0.42**
Tamaño de ventanas	0.503**
Vista al exterior	0.505**
Decoración	0.454**

^{**}significativo <.01

^{*}significativo < .05

Tabla 8.

Correlaciones de los puntajes de agrado e importancia para la fotografía más y menos preferida

Elementos	Fotografía más preferida	Fotografía menos preferida
Nivel de iluminación	0.105	0.1499
Control de iluminación	0.193**	0.02
Ventilación	0.218**	0.061
Privacidad	0.391**	0.066
Personalización	0.557**	0.063
Complejidad	0.213**	-0.054
Coherencia	0.205**	0.966**
Tamaño	0.133**	0.036
Aglomeración	0.184**	- 0.01
Territorialidad	0.29**	0.112
Tamaño de ventanas	0.399**	0.025
Vista al exterior	0.371**	- 0.02
Decoración	0.109	0.066

^{**}significativo <.01

Tabla 9.

Medias de los puntajes de la escala de agrado e importancia en la fotografía más preferida.

Elementos	Agrado	Importancia
Nivel de iluminación	6.934	5.583
Control de iluminación	6.111	4.941
Ventilación	6.462	5.135
Personalización	5.885	3.819
Privacidad	6.222	4.733
Tamaño	6.271	5.17
Complejidad	5.411	4.176
Aglomeración	4.882	4.761
Coherencia	6.104	5.16
Territorialidad	6.236	4.712
Tamaño de ventanas	6.648	4.739
Vista al exterior	6.611	5.076
Decoración	5.455	4.642

^{**}significativo <.01

^{*}significativo < .05

significativo < .05

Tabla 10.

Medias de los puntajes de la escala de agrado e importancia en la fotografía menos preferida.

Elementos	Agrado	Importancia
Nivel de iluminación	4.628	5.828
Control de iluminación	3.583	4.979
Ventilación	4.309	4.962
Personalización	3.587	3.917
Privacidad	3.575	4.746
Tamaño	3.417	4.837
Complejidad	3.233	4.309
Aglomeración	2.917	4.649
Coherencia	3.649	5.743
Territorialidad	3.674	4.538
Tamaño de ventanas	3.569	4.559
Vista al exterior	3.569	4.792
Decoración	2.910	4.424

^{**}significativo <.01

Los resultados obtenidos permiten concluir que la evaluación del agrado es independiente de la evaluación de la importancia, es decir, que los participantes son capaces de distinguir cuánto les agradan o no cada uno de los elementos incluidos en el instrumento, al momento de evaluar los ambientes laborales que les fueron presentados, de la importancia que tiene para ellos dichos elementos al momento de evaluar un ambiente laboral cualquiera.

Esta afirmación se basa, primero, en que todas las correlaciones entre los puntajes de importancia de la fotografía más preferida con los de la menos preferida fueron significativas y la mayoría con probabilidades menores a 0.01 (Tabla 7), lo cual significa que el nivel de importancia otorgado a los distintos elementos en el caso de la fotografía más preferida es similar al otorgado en la menos preferida, independientemente del nivel de agrado de dichos elementos en las mencionadas fotografías.

^{*}significativo < .05

Lo anterior se corrobora con los resultados mostrados en la Tabla 8 donde se observa que la mayoría de las correlaciones entre los puntajes de agrado y los puntajes de importancia, en el caso de la fotografía más preferida, son significativas, a diferencia de la fotografía menos preferida donde la mayoría de las correlaciones no son significativas. Esto se completa con los resultados mostrados en las Tablas 9 y 10 donde se observa que las medias de los puntajes de agrado para la fotografía más preferida son más altas que las medias de los puntajes de agrado para la fotografía menos preferida, mientras las medias de los puntajes de importancia para ambos tipos de fotografías son muy similares entre sí. Estos resultados parecen indicar la independencia entre las evaluaciones de agrado y las de importancia tal como se indicó anteriormente.

Adicionalmente, en las Tablas 9 y 10 es posible observar que los elementos, a los que se le asigna más puntaje en agrado para escoger el ambiente laboral como preferido son: el nivel de iluminación, el tamaño de las ventanas y la posibilidad de ver hacia el exterior desde la ventana de la oficina. Por su parte los elementos que más desagradan al elegir una oficina como la no preferida son: la decoración, la aglomeración: percepción subjetiva de falta de espacio y la cantidad de elementos presentes en la oficina. Se observa una distribución de los puntajes de agrado para la fotografía más preferida, entre 5 y 8; y para la menos preferida, se acercan al Desagrado estando entre 3 y 5; por lo que la escala de agrado logra discriminar la preferencia entre los ambientes laborales en todos los elementos.

En cuanto a los puntajes de importancia se observa en la fotografía más preferida y menos a los que se le asigna más puntaje son: nivel de iluminación y ventilación. En la más preferida también se le da importancia al tamaño de la oficina, la vista al exterior; y en la fotografía menos preferida al control de la iluminación y a la coherencia. Los puntajes fluctúan entre 4 y 6 para la fotografía más y menos preferida.

Posibles usos del instrumento

Al existir independencia entre las escalas de agrado y la de importancia es posible dar gran variedad de usos al instrumento construido para la presente investigación.

En primer lugar, es posible utilizarlo para evaluación de ambientes laborales reales, con el fin de identificar la preferencia ante el mismo y definir qué elementos deben modificarse por el desagrado que provocan. Con los datos que aporta el instrumento se puede transformar una oficina en base a la preferencia del usuario, mediante la identificación de los elementos que mejorarán el agrado por la misma.

Por otra parte, se sugiere continuar las investigaciones utilizando el instrumento sin los estímulos fotográficos; si no como se propone en el Anexo F, el contiene únicamente, el formato con los elementos, debe colocarse una hoja primero con las instrucciones, dependiendo del tipo de investigación que se realice, al relacionar la preferencia de un ambiente laboral con variables organizacionales como: rotación, productividad, satisfacción, compromiso organizacional, entre otras, con el fin de estudiar la posible relación entre estas variables.

7. ANALISIS DE LOS DATOS

Se utilizó el paquete estadístico SPSS, versión 7.5, a través del cual se realizaron los siguientes análisis:

 Análisis descriptivo de las variables predictoras sexo, edad, profesión y experiencia laboral, tanto para la muestra total como para cada grupo de fotografías. Esto se hizo con el fin de especificar las características de la muestra y detallar la manera cómo se distribuyeron las variables en cada grupo de fotografías (Anexo G).

- 2. Análisis descriptivo para cada uno de los trece elementos del instrumento definitivo tanto los puntajes de agrado e importancia en la fotografía más y menos preferida, calculando media y desviación de cada uno de ellos. La finalidad de este análisis fue detallar el funcionamiento de los elementos y las escalas Lickert de agrado e importancia, con la idea de concluir sobre el instrumento definitivo (Anexos H e I).
- 3. Se calculó la correlación entre el puntaje de agrado e importancia por elemento, para la foto más y menos preferida, con la intención de determinar si estos puntajes eran independientes entre sí o correlacionaban (Anexos J y K).
- 4. Se realizó el computo de la correlación entre los puntajes de importancia de la foto preferida y no preferida, con el fin de determinar si la importancia de un elemento dado se mantenía independientemente de la fotografía en la cual este había sido evaluado (Anexo L).
- Se calculó el modo para cada grupo de fotografías con el fin de identificar la fotografía más y menos preferida en cada dimensión (Anexo M).
- 6. Se calculó la media del puntaje de importancia por dimensión tanto para la fotografía más preferida como para la menos preferida, con el fin de realizar una diferencia de medias (t de student para muestras relacionadas) y determinar la variación en la importancia relativa otorgada a las dimensiones por los participantes. Se tomaron sólo los puntajes de importancia debido a que éstos estaban referidos a cualquier tipo de ambiente laboral (Anexos N y O).
- 7. Se hicieron análisis de regresión múltiple con todas las variables predictoras y todos los elementos que conformaban de la preferencia ambiental. Se incluyeron al sexo y a la profesión como variables dicotómicas, a la edad y a la experiencia laboral como continuas. Los trece elementos fueron tomados, tanto en su puntaje de agrado como en su puntaje de importancia para la fotografía más y menos preferida, es decir trece elementos multiplicado por escala de agrado e importancia (2), y multiplicado por fotografía más y menos preferida (2), en total 13 x 2 x 2 = 52 regresiones, de este total de 52

- regresiones sólo se reportan aquellas que resultaron significativas a nivel de 0.01, 0.05. Estos análisis se realizaron con el fin de identificar la relación entre los elementos de las dimensiones y las variables predictoras, así como conocer la cantidad de varianza del puntaje de agrado o importancia, que las variables predictoras explicaban al relacionarse con un elemento dado (Anexos P y Q).
- 8. Se realizó un ANOVA simple y una contrastación de medias de TUKEY con los tres grupos de profesiones A (carreras humanísticas), B (ciencias económicas y sociales), C (ingeniería, arquitectura y afines), con el fin de discriminar la dirección de las diferencias entre las profesiones tomadas en cuenta en el estudio. Este análisis logró complementar la información obtenida a través de las regresiones en las cuales la variable profesión había sido tratada como variable dicotómica (Anexo R).

RESULTADOS:

Con la finalidad de conocer cuál es la importancia relativa de las dimensiones del ambiente físico que elicitan la preferencia de interiores de oficina, y responder de esta manera a la hipótesis I del presente estudio, se calcularon las diferencias de media entre los puntajes de importancia, tanto para la fotografía más preferida como para la menos preferida, utilizando la t de student para muestras relacionadas.

En el caso de la fotografía más preferida se encontraron los resultados que se muestran a continuación en la tabla 11.

Tabla 11.

Diferencias de media de los puntajes de importancia de las dimensiones de la fotografía más preferida.

Dimensiones	Media 1° Dimensión	Media 2° Dimensión	Valor t
Condiciones Físicas – Características Psicológicas	5.2199	4.43375	14.69**
Condiciones Físicas – Características Espaciales	5.2199	4.8053	8.5 **
Condiciones Físicas – Elementos Estructurales	5.2199	4.8206	7.64 **
Características Psicológicas – Características Espaciales	4.4375	4.8053	-7.53 **
Características Psicológicas – Elementos Estructurales	4.4375	4.8206	-6.43 **
Características Espaciales – Elementos Estructurales	4.8053	4.8206	-0.27

^{** =} p < .01

A partir del análisis de las medias se pudo notar que las personas otorgan la mayor importancia a la dimensión condiciones físicas (media = 5.2199), conformada por los elementos de: (a) nivel de iluminación, (b) control de la iluminación, y (c) ventilación. En orden de importancia siguió la dimensión elementos estructurales (media = 4.8206) conformada por los elementos: (a) tamaño de las ventanas, (b) vista al exterior, y (c) decoración. Posteriormente continuó la dimensión características espaciales (media = 4.8053) que incluye los elementos: (a) complejidad, (b) coherencia, (c) tamaño de la oficina, y (d) territorialidad. Por último se encontró que la menos importante fue la dimensión características psicológicas (media = 4.4375), que incluye los elementos: (a) aglomeración, (b) personalización, y (c) privacidad. Es decir, al momento de preferir un ambiente laboral cualquiera, la mayor diferencia en cuanto a la importancia de las dimensiones se encontró entre la dimensión condiciones físicas y la dimensión características psicológicas (t= 14.69), en idéntico sentido se notó que la dimensión condiciones físicas fue mayor en importancia y difirió significativamente tanto de la dimensiones características espaciales y como de la dimensión elementos estructurales (t= 8.5 y t=7.64). Por su parte la dimensión características psicológicas fue la menor en importancia y difirió significativamente tanto de la dimensión características espaciales como de la dimensión elementos estructurales (t= -7.53 y t= -6.43). Por último se halló que no existe diferencia significativa en cuanto a la importancia relativa, entre la dimensión características espaciales y elementos estructurales (t= - 0.27). A continuación en la figura 1 se representan las medias anteriormente mencionadas, donde se observan de las diferencias de importancia entre las dimensiones.

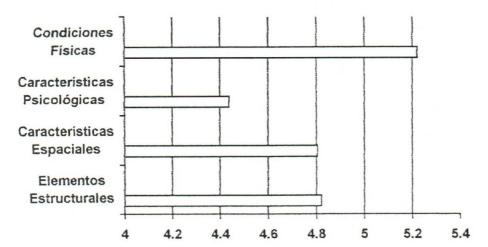


Figura 1. Medias de los puntajes de importancia de las dimensiones de la fotografía más preferida.

Por otro lado, con respecto a la fotografía menos preferida se encontraron las siguientes diferencias de media de los puntajes de importancia Tabla 12.

Diferencias de media de los puntajes de importancia de las dimensiones de la fotografía menos preferida.

Dimensiones	Media 1° Dimensión	Media 2° Dimensión	Valor t
Condiciones Físicas – Características Psicológicas	5.0735	4.4369	10.97**
Condiciones Físicas – Características Espaciales	5.0735	4.855	1.46
Condiciones Físicas – Elementos Estructurales	5.0735	4.5914	7.84 **
Características Psicológicas – Características Espaciales	4.4369	4.855	-2.89 **
Características Psicológicas – Elementos Estructurales	4.4369	4.5914	-2.67 **
Características Espaciales – Elementos Estructurales	4.855	4.5914	1.79

^{** =} p < .01

Se pudo observar a partir de las medias en la fotografía menos preferida, que las personas otorgan la mayor importancia a la dimensión condiciones físicas (media = 5.0735), dimensión que como ya se mencionó incluye el nivel de iluminación, el control de la iluminación, y, la ventilación. Seguidamente a diferencia de la fotografía más preferida, la dimensión que resultó con más importancia después de las condiciones físicas, fue la dimensión características espaciales (media = 4.855), conformada por el tamaño de las ventanas, la vista al exterior, y, la decoración. Seguidamente en orden de importancia se ubicó la dimensión elementos estructurales (media = 4.5914), que incluye complejidad, la coherencia, el tamaño de la oficina, y, la territorialidad. Finalmente, se encontró que en la fotografía menos preferida, la dimensión características psicológicas obtuvo los puntajes más bajos de importancia (media = 4.4369), la cual incluye la aglomeración, la personalización, y la privacidad. En cuanto a las diferencias de media se observó que las personas al preferir un ambiente laboral cualquiera, difieren de no significativamente en la importancia que le otorgan a la dimensión condiciones físicas y la dimensión características psicológicas (t= 10.97), así también las condiciones físicas resultaron significativamente más importantes que los elementos estructurales (t= 7.84). Por su parte la dimensión características psicológicas fue la menor en importancia y difirió significativamente tanto de la dimensión características espaciales como de la dimensión elementos estructurales (t= -2.89 y t= -2.67). Por último se halló que no existe diferencia significativa en cuanto a la importancia relativa, entre la dimensión condiciones físicas y la dimensión características espaciales (t=1.46), y entre las dimensiones características espaciales y elementos estructurales (t= 1.79). Seguidamente en la figura 2, se presentan estas medias por dimensión, en donde se pueden apreciar estas diferencias.

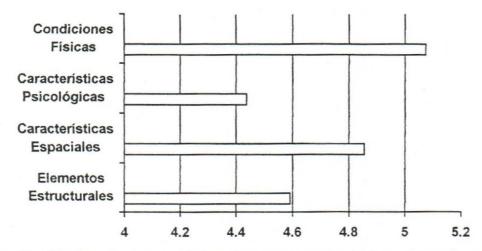


Figura 2. Medias de los puntajes de importancia de las dimensiones de la fotografía menos preferida.

Con el fin de responder a las hipótesis de la II a la V, se hizo un análisis de regresión múltiple para determinar el grado de asociación que había entre las variables sexo, edad, carrera y experiencia laboral, y los trece elementos del instrumento, tanto para la fotografía más preferida (Anexo P) como para la menos preferida (Anexo Q). En ambos casos se presentan los resultados significativos agrupados según las cuatro dimensiones que conforman la preferencia ambiental. Se incluyen los resultados obtenidos para cada una de las variables predictoras, considerando a la variable profesión como dicotómica. Luego, se profundiza en el comportamiento de esta variable a través de los resultados de un ANOVA simple (Anexo R) y de la prueba de diferencia de medias de TUKEY.

A continuación se presentan los resultados para la fotografía más preferida:

Dimensión I: Condiciones Físicas:

Del total de 78 personas que contestaron a este grupo de fotografías, el 55% pertenecía al género masculino y el 46% al femenino. Un 32% pertenecía al grupo de carreras humanísticas, un 29,5% al grupo de ciencias económicas y sociales, y un 38,5% al grupo de ingeniería, arquitectura y afines. En cuanto a la edad el 6,54% tenía entre 23 y 32 años, el 28,21% entre 33 y 42 años, el 6,1% entre 43 y 52 años, y el 2,6% entre 53 y 62 años de edad. Referente a la experiencia laboral, un 70,51% poseía entre 1 y 10 años de experiencia, un 23,08% entre 11 y 20 años, y un 6,41% tenía 20 o más años de experiencia laboral.

Los elementos controlados en esta dimensión fueron el nivel de iluminación y el control de la iluminación, resultando como la fotografía más preferida la I₃, ambiente iluminado y sin cortina; y como la menos preferida la I₄, ambiente poco iluminado y sin cortina.

En la figura 3 se presentan los resultados de la regresión múltiple entre las variables predictoras y el elemento control de la iluminación (importancia).

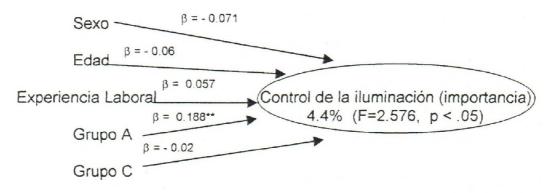


Fig. 3 Regresión de control de la iluminación (importancia) con las variables predictoras.

^{** =} p < .01

La posibilidad de controlar la entrada de luz natural a través de una cortina o persiana está determinada en un 4.4% por las variables predictoras, siendo la profesión la que más aporta a esta relación (β = 0.188 p < .01).

Por su parte el ANOVA reportó una varianza entre grupos significativa (F= 5.557, p<.01), encontrando las siguientes diferencias significativas (tabla 13).

Tabla 13.

Diferencias de media en control de iluminación importancia entre los grupos profesionales para la fotografía preferida.

Elemento	Grupo A – Grupo B	Grupo A – Grupo C	Grupo B – Grupo C
Control de Iluminación	0.497*	0.547**	5.006E-02

^{** =} p < .01 * = p < .05

Se observaron diferencias entre los grupos A y B en el elemento control de la iluminación importancia, siendo que las personas del grupo A (carreras humanísticas) le dan mayor importancia a este elemento que las personas del grupo B (ciencias económicas y sociales). Así también existe una diferencia significativa entre el grupo C y A, donde a las personas del grupo C (ingeniería, arquitectura y afines), otorgan mayor importancia a la posibilidad de control de iluminación en un ambiente laboral.

Seguidamente en la figura 4 se presentan los resultados de la regresión múltiple entre las variables predictoras y el elemento ventilación (importancia).

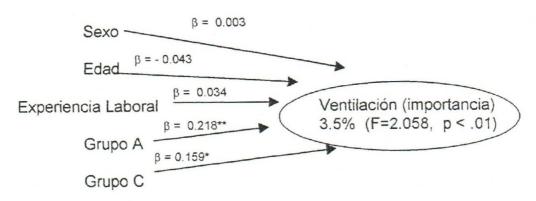


Figura 4. Regresión de la ventilación (importancia) con las variables predictoras.

** = p<.01 *= p<.05

La ventilación en su puntaje de importancia, está explicada en un 3.5% por el sexo, la edad, la experiencia laboral y la profesión siendo ésta última la que más contribuye a la relación, grupo A (β =0218, p< .01); grupo C (β = -0.159, p< .05).

Más específicamente respecto a la ventilación importancia, se obtuvo varianza entre grupos significativa (F= 5.108, p<.01), siendo sus diferencias de media las siguientes (tabla 14).

Tabla 14.

Diferencias de media en ventilación importancia entre los grupos profesionales para la fotografía preferida.

Elemento	Grupo A – Grupo B	Grupo A – Grupo C	Grupo B – Grupo C
Ventilación	0.473**	0.148	-0.326

^{** =} p < .01

Existe una diferencia significativa entre el grupo A y B, lo que indica que a las personas del grupo A, les importa más que su oficina esté adecuadamente ventilada.

Dimensión II: Características Psicológicas:

Del total de 72 individuos que respondieron a este grupo de fotografías, el 37,5% pertenecía al género masculino y 62,5% al femenino. Un 22,23% pertenecía al grupo de carreras humanísticas, un 29,16% al grupo de ciencias económicas y sociales, y un 48,61% al de ingeniería, arquitectura y afines. En lo referente a la edad, el 37,5% tenía entre 23 y 32 años, el 40,28% entre 33 y 42 años, el 19,5%, entre 43 y 52 años, y el 2,72% entre 53 y 62 años de edad. Con respecto a la experiencia laboral, un 51,39% poseía entre 1 y 10 años de experiencia, un 31,94% entre 11 y 20 años, y un 16,67% tenía 20 o más años de experiencia laboral.

Como se indicó en el método, los elementos controlados en esta dimensión fueron la privacidad y la personalización, resultando como la fotografía más preferida la II₃, ambiente no privado y personalizado, mientras que la fotografía menos preferida fue la II₄, ambiente no privado y no personalizado.

A continuación se representan en la figura 5, los resultados de la regresión múltiple entre las variables predictoras y el elemento personalización (importancia).

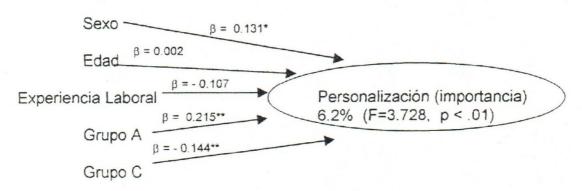


Figura 5. Regresión de personalización (importancia) con las variables predictoras.

** = p<.01 *= p<.05

La personalización en su puntaje de importancia, está explicada en un 6.2% por el sexo, la edad, la experiencia laboral y la profesión siendo ésta última la que más contribuye a la relación (grupo A β =0.215, p< .01); grupo C (β = -0.144, p< .01). Seguidamente la que más contribuye es la variable sexo (β =0.131, p<.05), entendiéndose que las mujeres son las que le otorgan mayor importancia a la personalización.

Más específicamente respecto a la relación con la profesión, se obtuvo varianza entre grupos significativa (F= 4.854, p<.01), siendo sus diferencias de media las que se presentan a continuación (tabla 15).

Tabla 15.

Diferencias de media en personalización importancia entre los grupos profesionales para la fotografía preferida.

Elemento	Grupo A - Grupo B	Grupo A – Grupo C	Grupo B - Grupo C
Personalización	0.737**	0.292	-0.444

^{** =} p<.01

Entre el grupo A y B se hallaron diferencias en cuanto a la importancia otorgada a la personalización, quiere decir que a las personas del grupo A les importa más que a las del B, la posibilidad de poder colocar objetos personales que los identifiquen como ocupantes.

Con respecto a la regresión múltiple entre las variables predictoras y el elemento privacidad importancia, se obtuvieron como resultados los siguientes (figura 6).

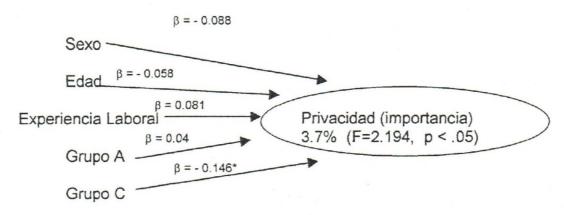


Figura 6. Regresión de privacidad (importancia) con las variables predictoras. * = p<.05

La privacidad en su puntaje de importancia, se encuentra explicada en un 3.7% por las variables predictoras, siendo el grupo profesional C, quien más contribuye a esta relación (β =0.148, p<.05).

En el ANOVA se reportó una varianza entre grupos significativa (F= 4.019, p<.01), encontrando las siguientes diferencias significativas (tabla 16).

Tabla 16.

Diferencias de media en privacidad importancia entre los grupos profesionales para la fotografía preferida.

Elemento	Grupo A – Grupo B	Grupo A – Grupo C	Grupo B – Grupo C
Control de lluminación	0.103	0.496*	0.393

^{* =} p < .05

Cuando se hace la diferencia de medias con la prueba de TUKEY, se observa que la diferencia significativa está entre los grupos A y C en el elemento privacidad importancia, siendo que las personas del grupo A (carreras humanísticas) le dan mayor importancia a este elemento que las personas del grupo B (ciencias económicas y sociales).

El último elemento de la dimensión características psicológicas donde se obtuvo un modelo de regresión significativo, fue el de aglomeración (agrado). A continuación en la figura 7 se muestran los resultados obtenidos en este modelo.

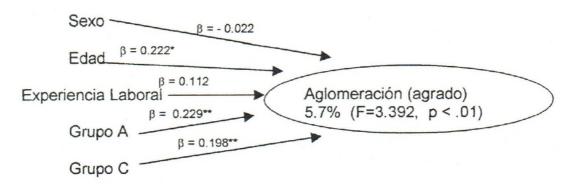


Figura 7. Regresión de aglomeración (agrado) con las variables predictoras. ** = p < .01 * = p < .05

El agrado por la aglomeración es explicado en un 5.7% por las variables predictoras, donde la variable edad aporta significativamente (β = 0.222, p<.05), es decir que a las personas de mayor edad les importa más el hecho de que no haya aglomeración, entendida como sensación subjetiva de falta de espacio. Por su parte la otra variable que aporta significativamente es la profesión, tanto para el grupo A (β = 0.229, p<.01), como para el grupo B (β = 0.198 p < .01).

En el ANOVA se notó una varianza entre grupos significativa (F= 5.32, p<.01), encontrando las siguientes diferencias significativas (tabla 17).

Tabla 17.

Diferencias de media en aglomeración importancia entre los grupos profesionales para la fotografía preferida.

Elemento	Grupo A – Grupo B	Grupo A – Grupo C	Grupo B – Grupo C
Control de Iluminación	1.031**	0.159	-0.872*

^{** =} p<.01 * = p<.05

Se observaron diferencias entre los grupos A y B en cuanto a la aglomeración importancia, siendo que las personas del grupo A (carreras humanísticas) le dan mayor importancia a este elemento que las personas del grupo B (ciencias económicas y sociales). Así también existe una diferencia significativa entre el grupo B y C, donde a las personas del grupo C otorgan mayor importancia a la ausencia de sensación subjetiva de falta de espacio.

Dimensión III: Características Espaciales.

Del total de 70 personas que contestaron a este grupo de fotografías, el 61,42% pertenecía al género masculino y el 38,58% al femenino. Un 31,43% pertenecía al grupo de carreras humanísticas, un 32,86% al grupo de ciencias económicas y sociales, y un 35,71% al grupo de ingeniería, arquitectura y afines. En cuanto a la edad el 61,43% tenía entre 23 y 32 años, el 24,28% entre 33 y 42 años, el 11,43% entre 43 y 52 años, y el 2,86% entre 53 y 62 años de edad. En la experiencia laboral, un 71,43% poseía entre 1 y 10 años de experiencia, un 20% entre 11 y 20 años, y un 8,57% tenía 20 o más años de experiencia laboral.

Los elementos controlados en esta dimensión fueron el tamaño y la complejidad de la oficina. La foto más preferida fue la III₂, ambiente de espacio grande y de pocos elementos; y la menos preferida fue III₁, ambiente de espacio grande y con muchos elementos.

Los resultados de la regresión múltiple entre las variables predictoras y la complejidad, se presentan en la figura 8.

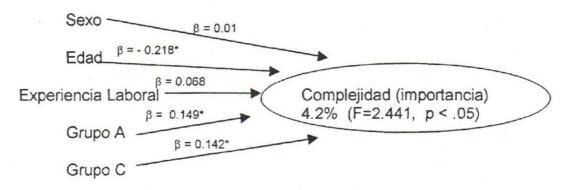


Figura 8. Regresión de complejidad (importancia) con las variables predictoras. * = p<.05

La importancia asignada al elemento complejidad resultó significativamente predicha por las variables sexo, edad, experiencia laboral y profesión en un 4.2%; siendo una de las que más aporta a esta relación la edad (β = - 0.218 p < .05), quiere decir que a los de menor edad les importa más que haya gran cantidad de elementos en una oficina que para este grupo sería preferida.

Dimensión IV: Elementos Estructurales.

Del total de 68 personas que contestaron a este grupo de fotografías, el 47% pertenecía al género masculino y el 53% al femenino. Un 38,24% pertenecía al grupo de carreras humanísticas, un 30,88% al grupo de ciencias económicas y sociales, y un 30,88% al grupo de ingeniería, arquitectura y afines. En cuanto a la edad el 42,65% tenía entre 23 y 32 años, el 35,3% entre 33 y 42 años, el 19,1% entre 43 y 52 años, y el 2,95% entre 53 y 62 años de edad. En la experiencia laboral, un 57,35% poseía entre 1 y 10 años de experiencia, un 23,53% entre 11 y 20 años, y un 19,12% tenía 20 o más años de experiencia laboral.

Los elementos que se manipularon en las fotografías de este grupo, fueron el tamaño de las ventanas y la vista al exterior, siendo la fotografía

preferida la IV₁, ambiente que tenía una ventana grande y con vista al exterior, y como la menos preferida la IV₂, ambiente que tenía una ventana pequeña y con vista al exterior.

En la figura 9 se representan los resultados de la regresión múltiple entre las variables predictoras y el tamaño de las ventanas en su escala de importancia.

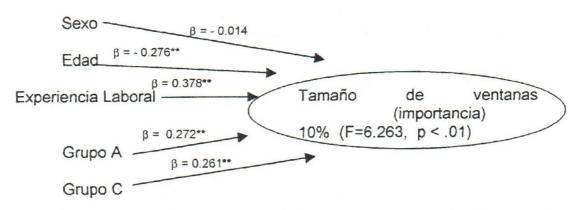


Figura 9. Regresión de tamaño de las ventanas (importancia) con las variables predictoras.

** = p<.01

Tal como se observa en la figura 9, el tamaño de las ventanas importancia se encuentra explicado en un 10% por las variables predictoras, mostrando una relación significativa con la experiencia laboral (β = 0.378, p<.01), la edad (β = 0.276, p<.01), y los grupos profesionales A (β = 0.272, p<.01) y C (β = 0.261, p<.01), lo cual implica que las personas de mayor experiencia laboral y con mayor edad, adjudican gran importancia a la presencia de ventanas grandes en sus oficinas.

En lo que se refiere a la profesión, se obtuvo una varianza entre grupos significativa (F=8.076, p<.01). La diferencia de medias fue como se muestra en la tabla 18.

Tabla 18.

Diferencias de media en tamaño de las ventanas importancia entre los grupos profesionales para la fotografía preferida.

Elemento	Grupo A – Grupo B	Grupo A – Grupo C	Grupo B – Grupo C
Tamaño de las ventanas	0.682**	4.699E-02	-0.635**

^{** =} p < .01

En lo que se refiere a la importancia del tamaño de las ventanas, se encontró una diferencia significativa entre el grupo A y B, siendo que las personas del grupo A les importa más que a las del B, un tamaño grande de las ventanas en su oficina. También respecto a este mismo elemento, se halló diferencia significativa entre el grupo B y C, siendo que a las personas del grupo C les importa más que a las del B el tamaño de la ventana.

Por último, en lo referente a la fotografía más preferida, se obtuvo un modelo de regresión múltiple significativo entre las variables predictoras y el agrado por la decoración (figura 10)

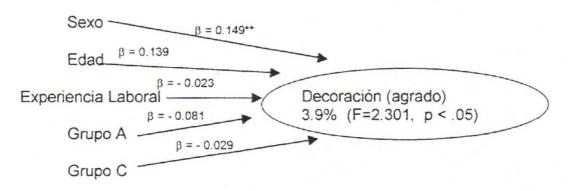


Figura 10. Regresión de la decoración (agrado) con las variables predictoras.

Esto indica que la decoración y el agrado que ésta produce se encuentra explicado en un 3.9% por las variables predictoras, siendo el sexo la variable predictora que más aporta a la relación (β=0.149 p< .01), lo cual quiere decir

que a las mujeres les agrada más la ornamentación en general dentro de la oficina.

En el caso de la fotografía menos preferida se obtuvieron los siguientes resultados:

Dimensión I: Condiciones Físicas:

En la figura 11 se presenta la regresión múltiple entre las variables predictoras y el agrado por el nivel de iluminación.

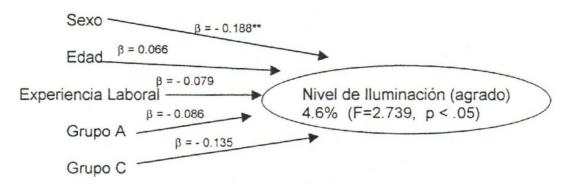


Figura 11. Regresión de nivel de iluminación (agrado) con las variables predictoras.

**= p<.01

Según se indica en la figura, el nivel de la iluminación agrado en la foto menos preferida, está explicado en un 4.6% por las variables predictoras, específicamente por el sexo (β =0.188, p<.05), donde las mujeres muestran un mayor agrado por el nivel de la iluminación.

Dimensión IV: Elementos Estructurales:

Seguidamente en la figura 12 se muestra la regresión múltiple que fue significativa para la relación entre las variables predictoras y el elemento tamaño de las ventanas en su puntaje de importancia.

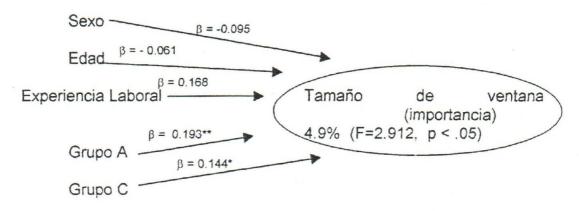


Figura 12. Regresión de tamaño de ventana (importancia) con las variables predictoras.

**= p<.01 *= p<.05

El tamaño de las ventanas (importancia) se encuentra explicado en un 4.9% por las variables predictoras, siendo la profesión la que aporta significativamente para la relación, el grupo A (β =0.193, p<.01) y el grupo B (β =0.144, p<.05).

En el ANOVA se encontró una varianza entre grupos significativa (F=5.232, p<.05). En la tabla 19 se muestran las diferencias de media entre los grupo profesionales, en el tamaño de las ventanas (importancia) para la foto menos preferida.

Tabla 19.

Diferencias de media en tamaño de las ventanas importancia entre los grupos profesionales para la fotografía menos preferida.

Elemento	Grupo A – Grupo B	Grupo A – Grupo C	Grupo B - Grupo C
Tamaño de las ventanas	0.548*	0.185	-0.363

^{* =} p < .05

Se encontró una diferencia significativa entre el grupo A y B, lo que quiere decir que a los profesionales del grupo A les importa más que a los del B, el hecho de su oficina tenga una ventana grande.

DISCUSIÓN

El propósito de esta investigación fue evaluar como variaba la importancia relativa otorgada a las dimensiones de la preferencia ambiental, a saber: (a) condiciones físicas, (b) características psicológicas, (c) características espaciales, y, (d) elementos estructurales; en función de ciertas variables sociodemográficas como los son el sexo, la edad, la experiencia laboral y la profesión.

De acuerdo al propósito precedente, se encontró que la importancia relativa otorgada a las dimensiones de la preferencia ambiental, sí varía, siendo la más importante la dimensión condiciones físicas, tanto para preferir un ambiente laboral como para no preferirlo. Esto coincide con los hallazgos del estudio de Fernández (1996) y apoya lo que afirman varias investigaciones dentro del área de la psicología industrial acerca de la importancia de poseer un ambiente laboral que cumpla con las condiciones físicas mínimas para trabajar en él de manera productiva. Entre las mencionadas investigaciones se encuentran las siguientes: Wineman (1982), quien expresa que se ha incrementado la atención prestada a las condiciones de trabajo en la oficina y los impactos del ambiente laboral en la efectividad y productividad profesional; Robbins (1996), quien hace referencia a estudios de las condiciones físicas y psicológicas del ambiente de trabajo, revisando los factores ambientales que inciden sobre los cuatro resultados organizacionales: la rotación, la satisfacción, el ausentismo y la productividad; Schultz (1985), quien dedica un capítulo de su libro a examinar las condiciones ambientales de trabajo, haciendo énfasis en las condiciones físicas que deben mantenerse adecuadamente para permitir el desenvolvimiento óptimo de la función que debe cumplirse dentro de una organización; y la de Bell y cols (1990), quienes consideran el aporte de la psicología ambiental a la psicología industrial, al realizar estudios de cómo el ambiente físico de trabajo afecta a las personas, siendo la satisfacción y la preferencia algunas de las variables investigadas.

En segundo lugar de importancia se encuentran las dimensiones características espaciales y elementos estructurales, tanto en el caso de los ambientes preferidos como de los no preferidos. Esto puede explicarse porque los elementos, a saber: la complejidad, el tamaño de las ventanas, la decoración y el tamaño de la oficina, que resultaron significativos en esas dos dimensiones pudieran incluirse dentro de lo que en los estudios mencionados se ha denominado condiciones físicas de trabajo.

En el último lugar de importancia se encuentran las características psicológicas que incluyen como elementos significativos: la aglomeración, la privacidad y la personalización.

Estos resultados, respecto a la importancia relativa de las cuatro dimensiones, pudieran deberse a la existencia de dos grandes grupos de dimensiones de la preferencia ambiental, por un lado las condiciones físicas que absorbería a las características espaciales y los elementos estructurales, y por otro lado las características psicológicas; siendo la dimensión de las condiciones físicas más importante que la dimensión de las características psicológicas.

También resultó interesante, la similitud obtenida en la importancia otorgada a las dimensiones de la preferencia ambiental, tanto para preferir un ambiente laboral como para no preferir otro, lo que indica que los trabajadores son capaces de mantener sus criterios de importancia para las diferentes dimensiones; esto puede deberse al hecho de pensar en una oficina ideal y adjudicar la importancia de los diferentes elementos en base a una estándar de comparación, es decir que la evaluación de la importancia se refiere a los

elementos que deben estar presentes en la oficina ideal, siendo distinto de la evaluación del agrado, que se refiere a la presencia de los elementos en una oficina particular. Esto está de acuerdo con lo que expone Purcell (1986), planteando que la experiencia de preferencia ante un ambiente es el resultado de un proceso de pareo de las características particulares disponibles en el presente y la representación mental de experiencias previas similares, es decir, que los atributos específicos de un ambiente particular son comparados con el esquema mental, y la respuesta afectiva ocurre en base a la congruencia o discrepancia entre los atributos presentes del ambiente y los del esquema prototipo. Se piensa que la evaluación de la importancia es un equivalente de la representación ideal de un ambiente laboral, y que la evaluación del agrado es la respuesta afectiva a los atributos de una oficina específica.

En apoyo a esto, también se obtuvo en los hallazgos de la presente investigación que la mayoría de los elementos que resultaron significativos pertenecían a la escala de evaluación de la importancia y no a la escala de evaluación del agrado, por lo tanto estos resultados pueden asociarse a la concepción ideal de una oficina y no a un ambiente en particular, en tal sentido, cabría mencionar que los hallazgos de este estudio son aplicables a una oficina cualquiera y que no se limitan a un tipo de oficina específica.

En otro orden de ideas, luego haber esclarecido que las dimensiones de la preferencia ambiental variaban, se pretendió conocer si la presencia de unos elementos u otros en un ambiente laboral, estaba relacionada con las variables predictoras: sexo, edad, experiencia laboral o profesión.

En la dimensión condiciones físicas los elementos control de iluminación (importancia) y ventilación (importancia), resultaron significativos para la profesión, específicamente a los del área humanística en conjunto con los de ingeniería, arquitectura y afines, les resultó importante la posibilidad de

controlar la entrada de luz y el intercambio de aire viciado por aire limpio, bien sea de manera natural o artificial, en contraste con el grupo de ciencias económicas y sociales, para quienes estos elementos no eran significativamente importantes. Esto quiere decir que si bien, las condiciones físicas son importantes para la mayoría de las personas, parece que especialmente para los grupos profesionales A y C, los elementos de control de la iluminación y la ventilación, están presentes como deseables en su oficina ideal.

En referencia a las características psicológicas se observa que las personas evalúan como elementos importantes la personalización y la privacidad, y evalúan como agradable una oficina que no se encuentre aglomerada. La posibilidad de identificar la oficina con objetos personales del ocupante de la misma, es evaluada como un elemento importante, para las mujeres y las personas pertenecientes a las profesiones humanísticas; a diferencia de los hombres y de las que pertenecen a las áreas profesionales de ciencias económicas y sociales, y de ingeniería, arquitectura y afines. Esta importancia que las mujeres y las personas del grupo de humanidades adjudican a la personalización, coinciden con la relevancia del elemento personalización en otras investigaciones como son las de Campbell (1979 cp. por Bell y cols 1990), y las de Maslow y Mintz (1986 cp. por Bell y cols 1990), las cuales indican que hay gran cantidad de razones por las que las personas quieren decorar y personalizar su ambiente de trabajo, entre algunas de estas razones se encuentra, la posibilidad de identificar que ese lugar les pertenece, el hacer más placentera la estadía y el poder proyectar algunos de sus sentimientos, metas y valores; estos autores concluyen que, las personas prefieren habitaciones agradables y placenteras, en lugar de habitaciones feas y rígidas. En este caso, es específico de las mujeres y los que pertenecen al área de humanidades, el hecho de sentirse más a gusto cuando su ambiente de trabajo se encuentra personalizado.

Referente a la privacidad, como otro elemento que resultó importante para preferir una oficina, se obtuvo que los del grupo profesional de ingeniería, arquitectura y afines, consideran necesaria la privacidad, como un elemento importante para su estándar de oficina ideal, esta importancia de la privacidad está apoyado por los resultados de las investigaciones de Block y Stokes (1989), Lang (1987), Newell (1994). Lang (1987), señala que la privacidad es importante en términos de la relación entre un individuo o grupo y el resto de la sociedad, explicando que el tipo y grado de privacidad deseado depende del patrón de conducta que se mantiene, el contexto cultural, la personalidad y las aspiraciones del individuo. La propuesta de Newell (1994) es un modelo sistémico de la privacidad, según el cual se entiende a la privacidad como un abierto y estacionario del individuo, donde influyen diversas sistema condiciones, tanto internas como externas, constituyéndose en una condición interactiva entre el individuo y su ambiente. También respecto a la privacidad Block y Stokes (1989) afirman que las personas que trabajan en oficinas privadas en tareas complejas, están más satisfechas con ella, por otro lado encontraron que el efecto de la facilitación social es notable cuando las personas trabajan en un ambiente no privado, particularmente cuando se trata de hombres introvertidos que se desempeñan en tareas simples. Por todo lo anterior se entiende que es importante tener privacidad para los del área profesional de ingeniería, arquitectura y afines; ya que para ellos es una manera cómoda de interactuar con el medio, siendo que les permite cumplir con el desempeño de sus tareas; mientras que a los otros grupos profesionales no les interesa tanto, quizás por el efecto de facilitación social que existe al tener oficinas no privadas, que el grupo de ingeniería, arquitectura y afines no parecen desear debido al tipo de tareas que cumplen.

Por otro lado, la percepción subjetiva de falta de espacio (aglomeración) se encuentra relacionada con la profesión y la edad; siendo que los profesionales del área de humanidades y de ingeniería, arquitectura y afines,

prefieren un ambiente laboral que no se perciba con falta de espacio, esto producto quizás de la clase de actividades que desempeñan las personas de esos grupos profesionales, lo que implica la necesidad de laborar en lugares con espacio, donde el mismo se encuentre dispuesto de tal forma que no produzcan sensación de aglomeración.. De igual manera, se encontró que las personas de mayor edad evalúan desagradable el percibir un ambiente laboral aglomerado, esto pudiera explicarse porque las personas de mayor edad son aquellas que ocupan cargos de mayor jerarquía, en los cuales se espera un ambiente no aglomerado, dado que es considerado como un símbolo de estatus; además son cargos cuyas funciones implican más esfuerzo intelectual que físico, donde el tipo de tareas y funciones que se desempeña requiere de un ambiente no aglomerado.

En la dimensión características espaciales es considerado importante el elemento complejidad en la preferencia por un ambiente laboral. Son las personas de menor edad las que prefieren más cantidad de elementos en la oficina, posiblemente por la necesidad de tener al alcance distintos tipos de información y materiales que están utilizando en sus actividades. Los que pertenecen a los grupos profesionales humanistas y de ingeniería, arquitectura y afines, consideran importante el no tener muchos elementos presentes en la oficina, esto pudiera relacionarse con la necesidad de materiales y equipos de acuerdo a la función que se esté desempeñando.

En la dimensión elementos estructurales se observa que las personas consideran importante el tamaño de las ventanas, prefiriendo aquellas con ventanas grandes, y evalúan como agradable la decoración.

El tamaño de las ventanas tiene relación con las variables predictoras edad, experiencia laboral, y profesión, por lo que se ha considerado que es un elemento muy relevante en la preferencia o no de una oficina. Las personas de

mayor edad, que a su vez son las que poseen mayor experiencia laboral, y las personas que pertenecen al área de humanidades, y de ingeniería, arquitectura y afines, prefieren oficinas con ventanas grandes. Investigaciones realizadas anteriormente indican que es importante la vista que se tenga a través de la ventana. Fernández (1996), reporta que entre las características de las oficinas preferidas se encuentra el que posean ventanas amplias y que tengan vista al exterior preferiblemente hacia un paisaje natural. Esto está apoyado por Tennessen y Cimprich (1995), en su estudio de los efectos sobre la atención de una vista a la naturaleza a través de una ventana panorámica, estos autores señalan que bajo las demandas crecientes de atención, la capacidad de los individuos para mantener la atención focalizada se fatiga, en ese momento ésta puede ser restaurada con la simple dirección de la vista a alguna escena natural. Kaplan y Kaplan (1989, cp Tennessen y Cimprich, 1995), sugieren que la exposición a ambientes naturales ayuda a mantener y restaurar la capacidad para dirigir la atención, focalizarla y concentrarse, lo cual cobra suma importancia en algunas actividades de oficina. Aunque el elemento que resultó importante en este estudio, fue el tamaño de las ventanas y no la vista al exterior, la explicación de la necesidad de restaurar la capacidad de atención focalizada mediante la dirección de la vista a una escena natural, puede trasladarse a la necesidad de mirar a través de una ventana de gran tamaño; en este sentido los que tienen mayor necesidad de una ventana grande por el tipo de actividades que desempeñan, son las personas que pertenecen a los grupos profesionales de humanidades y de ingeniería, arquitectura y afines. Sin embargo, no existe claridad entre si es el tamaño de la ventana independientemente de la vista al exterior, porque en este estudio las ventanas grandes están asociadas a vistas de paisajes naturales, por lo que puede sospecharse de la existencia de cierta relación entre el tamaño de las ventanas y la vista al exterior.

En este orden de ideas, también se conoce por el estudio de Hollister (1968, cp Bell y cols, 1990), que los trabajadores con oficinas sin ventanas sufren de fatiga, stress y expresan sentimientos negativos hacia el ambiente de trabajo; por lo que existen otros objetos naturales diferentes a las ventanas con vista exterior a la naturaleza, entre estos objetos naturales se mencionan las plantas en la oficina o las fotografías de ambientes naturales, que también permiten la restauración de la atención cuando la vista a una escena natural no es posible. Es decir, que los objetos decorativos que posea la oficina, pueden sustituir la función de la ventana incrementando la atención, tal como lo afirman Heerwagen y Orians (1986, cp Tennessen y Cimprich, 1995), quienes encontraron en su investigación que en oficinas sin ventanas, las pinturas o fotos de paisajes, juegan idéntico papel que las ventanas en las oficinas, así también que, en oficinas donde no había ventanas era mucho más frecuente incluir afiches de paisajes y escenas naturales que paisajes urbanos. Es por ello que se sugiere profundizar en este punto para futuras investigaciones.

El punto anterior parece relacionarse con el agrado hacia el elemento decoración, mostrado por los participantes, específicamente los del sexo femenino, ya que los objetos mencionados forman parte de la definición de decoración utilizada en este estudio. Así, la presencia de vegetación a través de plantas en una oficina, es un elemento decorativo importante que ha sido investigado en relación con la productividad (Larsen, Adams, Deon, Kweon y Tyler, 1998). Estos autores plantearon la idea de que la presencia de plantas en la oficina tiene efectos positivos sobre la productividad, la percepción de desempeño y la actitud frente al espacio. De igual manera se sugiere la existencia de un límite para dicha influencia positiva, puesto que un número excesivo de plantas puede tener un efecto negativo en la percepción de comodidad y atractibilidad de una oficina. A pesar de que no existe una explicación clara de porque las mujeres evalúan más agradable una oficina que se encuentre bien decorada, si parece importante tomar en cuenta a la

decoración como elemento que puede determinar la preferencia hacia un ambiente laboral.

De todo lo anteriormente expuesto sobre las variables sociodemográficas y los elementos de las dimensiones de la preferencia, es valido afirmar que efectivamente las variables predictoras variarán en la importancia relativa otorgada a las dimensiones.

Referente al sexo, las mujeres otorgan en la evaluación de la preferencia mayor importancia a la personalización del ambiente de trabajo, escogiendo oficinas donde tengan la posibilidad de colocar objetos que identifiquen al ocupante de la misma. Las mujeres evalúan con más agrado el ambiente laboral que se encuentre adecuadamente decorado; no existe una relación con elementos de las dimensiones: características psicológicas y espaciales. Los hombres evalúan como desagradable un ambiente laboral cuando el nivel de iluminación no es el adecuado.

En cuanto a la edad, las personas de menor edad evalúan como importante tener muchos elementos en su oficina, incluyendo diferentes materiales y equipos. Las personas de mayor edad evalúan desagradable un ambiente que se perciba subjetivamente con falta de espacio, y junto con las personas de mayor experiencia laboral, prefieren las oficinas con ventanas grandes.

En cuanto a la profesión, se observa que los profesionales del área de humanidades consideran importante la posibilidad de controlar la entrada de luz natural, la ventilación, la personalización, que no haya aglomeración, que haya pocos elementos y que las ventanas sean de tamaño grande. Los que pertenecen al grupo de ingeniería, arquitectura y afines, consideran importante

la ventilación, la privacidad, que no haya aglomeración, que haya pocos elementos y que la ventana sea grande.

De lo anterior se concluye que de entre todas las variables sociodemográficas estudiadas, la que produce mayor número de variaciones en la importancia relativa que se le otorgaba a las dimensiones de la preferencia ambiental, es la profesión, lo que se debe a la diferencia entre las funciones que desempeñan estas áreas profesionales y a la adecuación a la función que cumplen los equipos, materiales y el ambiente físico de trabajo en general.

CONCLUSIONES Y RECOMENDACIONES

El objetivo que guió el presente trabajo de investigación fue evaluar cómo variaba la importancia relativa otorgada a las cuatro dimensiones de la preferencia de ambientes laborales (condiciones físicas, características psicológicas, característica espaciales y elementos estructurales), en función de las variables predictoras de sexo, edad, experiencia laboral y profesión. Esto se logró gracias a la diferencia de medias de la importancia de los elementos de cada dimensión, al análisis de regresión múltiple para todas las variables predictoras, y al ANOVA simple y prueba de TUKEY para los grupos profesionales estudiados, a saber, humanidades, ciencias económicas y sociales, e ingeniería arquitectura y afines.

A partir del análisis de la diferencia de medias en la importancia de las dimensiones se determinó que la dimensión condiciones físicas, es la más importante tanto para preferir como para no preferir una oficina. Seguidamente en orden de importancia se encuentran las características espaciales y los elementos estructurales, quedando como menos importante la dimensión psicológica. En tal sentido se recomienda para futuras investigaciones dilucidar la existencia de estas cuatro dimensiones, y si estas se dividen en dos grandes grupos, el de condiciones físicas y el de características psicológicas.

En base al análisis de regresión múltiple se determinaron las siguientes características deseables para una oficina (tabla 20), que resultaron significativas para las variables predictoras sexo, edad y experiencia laboral:

Tabla 20.

Características de los ambientes laborales preferidos por las mujeres, participantes de diferentes edades y de mayor experiencia laboral.

Sexo Femenino	Ed	ad	Mayor Experiencia
	Menor Edad	Mayor Edad	Laboral
 Es importante que sea personalizada. Les agrada el que estén bien decoradas. 	 Les importa que haya muchos elementos. 	 Les agrada poco la aglomeración. Es importante que la ventana sea de tamaño grande. 	Es importante que la ventana sea de tamaño grande.

En lo que respecta a los grupos profesionales que se estudiaron, se observó que el grupo de carreras humanistas y el de ingeniería, arquitectura y afines, son los que se relacionan con los elementos de las dimensiones y los que difieren entre si, en tal sentido los del grupo de ciencias económicas y sociales no aportan mayor información, estos no difirieron en la importancia relativa de las dimensiones de la preferencia. Se recomienda para próximos estudios investigar la razón de esta aparente indiferencia a los elementos del ambiente físico por parte de este grupo profesional.

Por su parte a través del análisis de regresión múltiple luego complementado con el ANOVA para los grupos profesionales, se encontraron las siguientes características deseables para una oficina (tabla 21), que resultaron significativas para los grupos profesionales A y C.

Tabla 21.

Características de los ambientes laborales preferidos por las personas de las carreras humanistas y de ingeniería, arquitectura y afines.

	Humanidades		Ingeniería, arquitectura y afines
•	Les importa tener la capacidad para	•	Les importa una adecuada ventilación.
	controlar la entrada de luz natural a través	•	Les importa que esté personalizada.
	de una persiana o cortina.	•	Les importa que sea privada.
•	Les importa una adecuada ventilación.	•	No les agrada la aglomeración.
•	Les importa que esté personalizada.	•	Les importa que la presencia de ventanas
•	Les importa que sea privada.		de tamaño grande.
•	No les agrada la aglomeración.		
•	Les importa que la presencia de ventanas		
	de tamaño grande.		

La variable predictora que tuvo mayor cantidad de asociaciones significativas fue la profesión, lo que indica que la variación en las actividades realizadas y el tipo de tareas que se desempeñan, influyen en la adecuación a la función.

Gran parte de los resultados obtenidos coinciden con los hallazgos reportados por otros autores, lo cual da apoyo a los del presente trabajo de investigación. En este sentido se encontraron coincidencias con los elementos que los autores señalados en el marco teórico consideran relevantes para un ambiente laboral, estos son elementos que han sido estudiados en el área de psicología ambiental y que se ha determinado que influyen en el comportamiento humano. También se encontró coincidencia con los elementos que la psicología industrial y organizacional toma como condiciones físicas que deben ser consideradas para el bienestar, la satisfacción y la productividad de los trabajadores.

Por su parte hubo ciertas relaciones de las variables predictoras con los elementos de las dimensiones (mujeres con agrado decoración, baja edad con importancia por muchos elementos), para las cuales no se encontró una contraparte en la bibliografía revisada, los cuales deberán ser estudiados con mayor profundidad en otras investigaciones.

Un hallazgo interesante que surgió a partir del análisis de correlaciones, fue la discriminación que efectivamente los participantes lograron hacer entre la evaluación de agrado y de importancia, y la capacidad que tuvieron para mantener el criterio de importancia tanto para la fotografía preferida como para la no preferida. Esto permite concluir que la importancia es una apreciación más global y generalizable que la evaluación de agrado, así mismo que la importancia se corresponde a un ideal de oficina con el cual las personas comparan cualquier ambiente laboral particular que se les presente.

Otro, hallazgo interesante de esta investigación, se refiere a la importancia otorgada al tamaño de las ventanas y lo que otros autores reportan acerca de la vista de una escena natural a través de la ventana. Se sugiere que en subsiguientes investigaciones se estudien tanto el tamaño de las ventanas como la vista al exterior de paisajes naturales y no naturales, y la relación entre ambas variables estudiadas separadamente.

Es importante hacer notar, que los hallazgos del presente estudio tienen una importante aplicación en el área de diseño de ambientes laborales, por tanto, se recomienda a los profesionales del diseño tomar en cuenta la necesidad de los futuros ocupantes de las oficinas para lograr entre otras cosas la adecuación a la función. También son resultados que deben se tomados en cuenta por aquellas personas que ocupan puestos de decisión dentro del área organizacional, dada la importancia que tienen estos elementos tanto para la psicología ambiental como para la psicología industrial.

BIBLIOGRAFÍA

Bell, P., Fisher, J., Baum, A., y Green, T. (1990). *Environmental psychology*. (3era Ed.) Estados Unidos de América: Saunders College Publishing.

Block, L. K., y Stokes, G. S. (1989) Performance and satisfaction in private versus nonprivate Work Settings. *Environment and Behavior.* **21** (3), 277-297.

Canter, D. (1983) The psysical Context of Work en Oborne, D. J., Gruneberg, M. M. The Physical Environment at Work. New York: John Wiley & Sons, Ltd.

Chaplin, J y Krawiec, T. (1978) *Psicología: Sistemas y teoría.* (3era Ed.) México: Interamericana.

Craik, K. (1997) Book Rewies of Weber, R.: On the Aesthetics of Architecture: a psychological approach to the structure and the order of perceived architectural space. *Journal of Environmental Psychology*. **17**, 75 - 79.

Dumesnil, C. (1987) Office case study: Social Behavior in relation to the design of the environment. *The Journal of Architectural and planning research*, **4**, 7 - 13.

Fernández, L. (1996). Dimensiones del ambiente físico y la respuesta estética o preferencia de ambientes laborales. Tesis de Maestría no publicada. Universidad Simón Bolívar. Caracas. Venezuela.

Forgus, R. (1972) Percepción: Proceso básico en el desarrollo cognoscitivo. (1era Ed.) México: Trillas.

Gutheil, I. (1992) Considering the physical environment: An essential component of good practice. *Social Work*, **37**, 391 - 396.

Hagen, M. (1992) James J. Gibson's ecological approach to visual perception. En: S. Koch. *A century of psychological science*. Washington D. C.: American Psychological Association.

Henle, M. (1992) Rediscovering gestalt psychology. En: S. Koch. *A century of psychological science*. Washington D. C.: American Psychological Association.

Holahan, Ch. (1991) Psicología ambiental: Un enfoque general. (1era Ed.) México: Limusa.

Hull y Stewart (1992) Validity of photobased scenic beauty and judgements. Journal of Environmental Psychology. **12**, (4), 101 – 114.

Ittelson, W. H. (1973) Environmental perception and contemporary perceptual theory. En: W. Ittelson (Ed). Environment & Cognition (pp. 1-19). New York. Seminar Press.

Ittelson, W. H. (1976) Some issues facing a theory of environment and behavior. En H. M. Proshansky, W.H. Ittelson y L. Rivlin (Eds) *Environmental psychology, people and their physical settings.* New York: Holt, Rinehart and Winston.

Ittelson, W. H. (1978) Environmental perception and urban experience. Environment and Behavior. **10**, (10) 193-213

Kaplan, R. y Kaplan, S. (1975) Aesthetics, affect and cognition. Environmental preference from an evolutionary perspective. *Environment and Behavior.* **19**, (1) 3-32.

Kaplan, R. y Kaplan, S. (1987). The experience of nature. *A psychological perspective*. Cambridge: Cambridge University Press.

Kerlinger, F. (1984) Investigación del comportamiento. Técnicas y metodología. (2da Ed.) México: Interamericana.

Lang, J. (1987) Creating architectural theory: The role of the behavioral sciences in environmental design. New York: Van Nostrand Reinhold.

Larsen, L., Adams, J., Deal, B., Kweon, B., y Tyler. (1998). Plants in the workplace: The effects of plant density on productivity, attitudes and perceptions. *Environment and behavior*. **30** (3), 261 - 281.

Magnusson, D. (1990) Teoría de los test. (2da Ed.) México: Trillas.

Nasar, J. (1983). Adult viewers' preferences in residential scenes A study of the relationship of environmental attributes to preference. *Environment and Behavior.* **5** (15), 589 – 614.

Nasatir, J. (1997). Full partnership. Interior Design. 68 (8), 102 - 105.

Newell, P. (1994) A systems model of privacy. *Journal of Environmental Psychology.* **14**, 65 – 78.

Oborne, D. J., y Gruneberg, M. M. (1983). The environment and productivity: An introduction. En: D. J., Oborne, y M. M., Gruneberg. *The physical environment at work*. New York: John Wiley & Sons Ltd.

Oborne, D. J. (1982) Ergonomics at work. New York: John Wiley & Sons.

Parsons, H.M. (1976). Work environments. En: I. Altman, y J.F. Wohlwill. Human behavior and environment: Advances in theory and research (Vol. 1). New York: Plenum.

Pennartz, P. J., Elsinga, M. G. (1990) Adults, Adolescents, and Architects: Differences in Perception of the Urban Environment. *Environment and Behavior.* **22**, (5) 675-714.

Purcell, A. T. (1986). Environmental perception and affect: A schema discrepancy model. *Environment and Behavior*. **18** (1), 3-30.

Ritterfeld, U., y Cupchik, G. C. (1996). Perceptions of interior spaces. *Journal of Environmental Psychology*. **16**, 349 - 360.

Robbins, S. (1996). Comportamiento organizacional. (7ma Ed.). México: McGraw Hill.

Salazar, J., Montero, M., Muñoz, C., Sánchez, E., Santoro, E. Y Villegas, J. (1979)

Psicología Social. México: Trillas.

Schultz, (1985) Psicología Industrial. México: Trillas.

Shafer, E.L. y Richards, T. A.. (1974). A comparison of viewer rections to outdoor scenes and photographs of those scenes. En: D. Canter, y T. Lee. *Psychology and Built Environment*. Architectural Press.

Shuttleworth, S. (1980). The use of photograph as an environment presentation medium in landscape studies. *Journal of environmental Manamegent.* **11**, 61-76.

Sommer, R. (1996). Benchmarks in environmental psychology. *Journal of Environmental Psycology*. **17**, 1 – 10.

Sundstrom, E., Town, J. P., Rice, R. W., Osborn, D. P., Brill, M. (1994) Office Noise, Satisfaction, and Performance. *Environment and Behavior.* **26**, (2) 195-222.

Tennesen, C. y Cimprich, B. (1995). Views to nature: Effets on attention. Journal of Environmental Psychology. **15**, 77 – 85.

Wapner, S. (1995). Toward Integration: Environmental Psychology in relation to other subfields of Psychology. *Environment and Behavior.* **27**, (1) 9 -32.

Wineman, J. D. (1982). Office design and evaluation: An overview. *Environment and Behavior.* **14** (3), 271 - 298.

ANEXO A
MUESTRA

MUESTRA

		FOTOS		GRUPOI				GRUPO I	I			GRUPO II	<u> </u>			GRUPO I			
CARRERA	GENERO	GEDAD/EXP	1	2	3	TOTAL	1	2	3		11	2	3		11	2	3		
		1	7			7	2			2	7			7	5			5	21
	Н	2	1	1	2	4	1	2		3		3		3	2	3		5	15
	22	3							1	1			1	1			2	2	4
A		4			1	1			1	1	1			1					3
	TOTAL		8	1	3	12	3	2	2	7	8	3	1	12	7	3	2	12	43 22 12
		1	10	1		11	5			5	3			3	3			3	22
	M	2					1			1	1	3	1	5	4	2		6	12
		3		1		1		2	1	3	1		1	2			3	3	9
		4	1			11							Annal veltament Property		1		1	2	3
	TOTAL		11	2		13	6	2	11	9	5	3	2	10	8	2	4	14	46
TOTAL			19	3	3	25	9	4	3	16	13	6	3	22	15	5	6	26	46 89 24
		1	3	2		5	2	1		3	14			14	2			2	
	Н	2		5		5		2		2					2	1		3	10
		3						2	1	3							3	3	6
В		4											1	1					1
	TOTAL	3	3	7		10	2	5	1	8	14		1	15	4	1	3	8	41
		1	8	2		10	6			6	5	1		6	7	1		8	30
	М	2	1			1		5	1	6	2			2	1			1	10
		3		2		2			1	1						1	3	4	/
		4							-									13	47
	TOTAL		9	4		13	6	5	2	13	7	1		8	8	2	3	13	47
TOTAL		.,	12	11		23	8	10	3	21	21	1	1	23	12	3	6	21	88 30
		1	10			10	3			3	7	2		9	8			8	30
	Н	2	8	1		9	2	3		5	2	2		4		3		3	21
		3			2	2		1	2	3	1	1	1	3			1	1	9
С		4	_					-	1	1	_							10	1
		TOTAL	18	1	2	21	5	4	3	12	10	5	1	16	8	3	1	12	61
		1	5			5	8			8	4			4	3	_		3	20
	М	2	1	2		3	7	5		12	2	1		3	1	5		6	
		3		1		1			3	3		1	1	2					6
	-	4		-												-			- 50
		TOTAL	6	3		9	15	5	3	23	6	2	1	9	4	5		9	50
TOTAL			24	4	2	30	20	9	6	35	16	7	2	25	12	8	1 1	21	50 111 288
TOTAL			55	18	5	78	37	23	12	72	50	14	6	70	39	16	13	68	288

A N E X O B

INSTRUMENTO INICIAL

UNIVERSIDAD CATÓLICA ANDRÉS BELLO ESCUELA DE PSICOLOGÍA

PARTE I

INSTRUMENTO INICIAL

Este instrumento forma parte de un trabajo de investigación cuyo objetivo es describir cómo influyen algunas variables personales en la importancia relativa dada a los aspectos del ambiente físico que son relevantes para la preferencia (gusto, evaluación emocional favorable) de ambientes laborales, específicamente, de interiores de oficina.

Su colaboración resulta particularmente valiosa para nosotros, y consiste en responder lo más sinceramente posible a los apartados siguientes:

DATOS PER	SONALES:	
Sexo: M	F	Edad: años
Profesión:		Experiencia laboral en interiores de oficina: años
PARTE II		
Ordene los a de ellos, desde el men		resentados, utilizando los números que identifican a cada uno más preferido.
	Menos	

GRACIAS POR SU COLABORACIÓN

PARTE III

Indique en el ambiente laboral que usted escogió como el MÁS preferido, qué tanto (en qué medida) le agradan cada uno de los siguientes elementos en dicho ambiente, y a continuación señale qué tan importantes son para usted cada uno de ellos al momento de evaluar un ambiente laboral cualquiera.

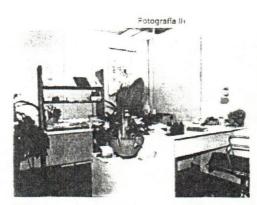
ELEMENTOS	Desagrado	Agrado	Poco Importante	Muy Importante
NIVEL DE ILUMINACIÓN:				
Grado de iluminación existente en	el			
ambiente.				
CONTROL DE LA ILUMINACIÓN:				
Posibilidad de controlar la entrada de la	ız			
natural a través de la presencia de un	1 1 1			
cortina o persiana que pueda s	1 1 1			
manipulada por el ocupante de la oficina				
VENTILACIÓN:				
Cambio de aire viciado por aire limpio.	EI			
sistema de ventilación puede ser natural				
artificial o una combinación de ambas.				
PERSONALIZACIÓN:				
Presencia de objetos personales qu	ie			
permiten identificar quién es el ocupan				
de una oficina.				
PRIVACIDAD:				
Control selectivo del acceso a uno mism	10			
o al grupo al que uno pertenece. Pued	1 1 1			
ser visual (posibilidad de no ser visto)				
auditiva (posibilidad de no ser oído).				
TAMAÑO DEL ESPACIO:				
Dimensiones de la oficina.				
COMPLEJIDAD:				
Número de elementos presentes en	el			
ambiente.				
DENSIDAD:				
Número de personas por área espacial.				
AGLOMERACIÓN:				
Percepción subjetiva de falta de espacio				
COHERENCIA:				
Sentido de orden u organización d	el			
espacio.				
TERRITORIALIDAD:				
Posesión de un espacio físico fijo y co	on! I I			
límites visibles.				
TAMAÑO DE LAS VENTANAS:				
Dimensiones de la ventana.				
VISTA AL EXTERIOR:				
Posibilidad de ver hacia un paisa	ie			
(natural o construido) a través de				
ventana de la oficina.				
DECORACIÓN:				
presencia de objetos decorativos	0			
vegetación dentro de la oficina.				
CUBRIMIENTO DEL PISO:				
Material que cubre el piso de la oficina.				
Triaterial que edore el piso de la oficilia.				

PARTE IV

Indique en el ambiente laboral que usted escogió como el MENOS preferido, qué tanto (en qué medida) le agradan cada uno de los siguientes elementos en dicho ambiente, y a continuación señale qué tan importantes son para usted cada uno de ellos al momento de evaluar un ambiente laboral cualquiera.

ELEMENTOS	Desagrado	Agrado	Poco Importante	Muy Importante
NIVEL DE ILUMINACIÓN:				Importante
Grado de iluminación existente en	el			
ambiente.				
CONTROL DE LA ILUMINACIÓN:				
Posibilidad de controlar la entrada de la	12			
natural a través de la presencia de un				
cortina o persiana que pueda s				
manipulada por el ocupante de la oficina				
VENTILACIÓN:				
Cambio de aire viciado por aire limpio.	EI			
sistema de ventilación puede ser natural				
artificial o una combinación de ambas.				
PERSONALIZACIÓN:				
Presencia de objetos personales qu	ie			
permiten identificar quién es el ocupan				
de una oficina.				
PRIVACIDAD:				
Control selectivo del acceso a uno mism	10			
o al grupo al que uno pertenece. Pued				
ser visual (posibilidad de no ser visto)				
auditiva (posibilidad de no ser oído).				
TAMAÑO DEL ESPACIO:				
Dimensiones de la oficina.				
COMPLEJIDAD:				
Número de elementos presentes en	al l			
ambiente.				
DENSIDAD:				-
Número de personas por área espacial.				
AGLOMERACIÓN:				
Percepción subjetiva de falta de espacio				
COHERENCIA:	 			-
Sentido de orden u organización d				
espacio.				
TERRITORIALIDAD:				
Posesión de un espacio fisico fijo y co				
limites visibles.				
TAMAÑO DE LAS VENTANAS:				
Dimensiones de la ventana.				
VISTA AL EXTERIOR:				
Posibilidad de ver hacia un paisa				
(natural o construido) a través de				
ventana de la oficina.	a			
DECORACIÓN:				
presencia de objetos decorativos	0			
vegetación dentro de la oficina.				
CUBRIMIENTO DEL PISO:				
Material que cubre el piso de la oficina.				

A N E X O C FOTOGRAFÍAS INSTRUMENTO INICIAL



Fotografía la

Fotografía 14

Fotografía IIs

Fotografía II4

Fotografia III4

Fotograi

A N E X O D INSTRUMENTO DEFINITIVO

UNIVERSIDAD CATÓLICA ANDRÉS BELLO ESCUELA DE PSICOLOGÍA

INSTRUMENTO DEFINITIVO

Este instrumento forma parte de un trabajo de investigación cuyo objetivo es describir cómo influyen algunas variables personales en la importancia relativa dada a los aspectos del ambiente físico que son relevantes para la preferencia (gusto, evaluación emocional favorable) de ambientes laborales, específicamente, de interiores de oficina.

Su colaboración resulta particularmente valiosa para nosotros, y consiste en responder lo más sinceramente posible a los apartados siguientes:

PARTE I DATOS PERSONALES: Sexo: M ____ F ____ Edad: años Profesión: Tiempo aproximado que lleva trabajando en oficinas años PARTE II Ordene los ambientes laborales presentados, utilizando el número romano y subíndice que identifica a cada uno de ellos, desde el menos preferido hasta el más preferido. Menos Más PARTE III A continuación se presenta un ejemplo de cómo deben responderse las partes subsiguientes de este instrumento. Allí se le pedirá que, basándose en las fotografías que escogió como la más y la menos preferida en la Parte II, indique qué tanto (en qué medida) le agradan o desagradan en la fotografía los elementos allí señalados y qué importancia le otorga a cada uno de ellos al momento de evaluar un ambiente laboral cualquiera. Ejemplo:

En el ejemplo, la persona marcó una "X" próxima a **Agrado** porque en la fotografía que escogió como la más preferida le agrada mucho el material que cubre el piso de la oficina, al mismo tiempo marcó una "X" próxima a **Poco Importante** porque a esta persona le parece poco importante este elemento al evaluar cualquier ambiente laboral.

Agrado

Poco

Importante

Muv

Desagrado

ELEMENTOS

CUBRIMIENTO DEL PISO:

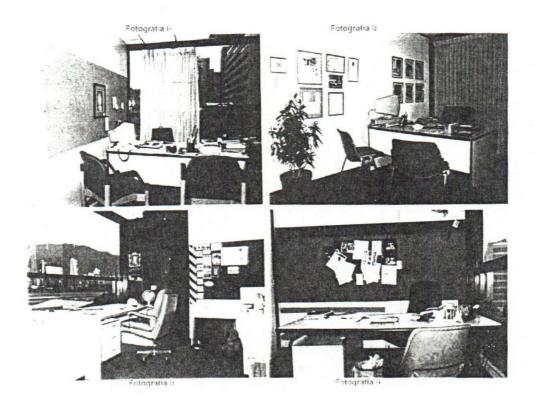
GRACIAS POR SU COLABORACIÓN

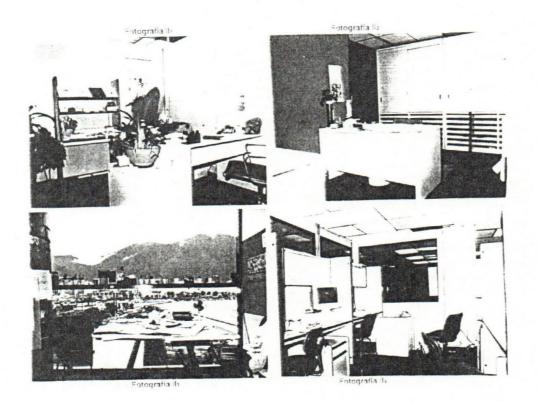
PARTE V

Utilizando la fotografía que usted escogió como la MENOS preferida, evalúe el agrado y la importancia de los siguientes elementos, siguiendo el procedimiento explicado en el ejemplo que aparece en la página anterior.

Recuerde contestar a todos los elementos.

ELEMENTOS	Desagrado	Agrado	Poco Muy Importante
	\downarrow	\downarrow	\downarrow \downarrow
NIVEL DE ILUMINACIÓN: Grado de iluminación existente en el ambiente.			
CONTROL DE LA ILUMINACIÓN: Posibilidad de controlar la entrada de luz natural a través de la presencia una cortina o persiana que pueda ser manipulada por el ocupante de la oficir			
VENTILACIÓN: Cambio de aire viciado por aire limpio. El sistema de ventilación puede natural o artificial o una combinación de ambas.	ser		
PERSONALIZACIÓN: Presencia de objetos personales que permiten identificar quién es el ocupa de una oficina.	inte		
PRIVACIDAD: Control selectivo del acceso a uno mismo o al grupo al que uno pertene Puede ser visual o auditiva (posibilidad de no ser visto o de no ser oído).	ece.		
TAMAÑO DEL ESPACIO: Dimensiones de la oficina, espacio para materiales y equipo para rec visitantes y moverse dentro de la oficina.	ibir		
COMPLEJIDAD: Número de elementos presentes en el ambiente.			
AGLOMERACIÓN: Percepción subjetiva de falta de espacio.			
COHERENCIA: Sentido de orden u organización del espacio.			
TERRITORIALIDAD: Posesión de un espacio físico fijo y con límites visibles.			
TAMAÑO DE LAS VENTANAS: Dimensiones de la ventana.			
VISTA AL EXTERIOR: Posibilidad de ver hacia un paisaje (natural o construido) a través de ventana de la oficina.	a la		
DECORACIÓN: Ornamentación en general, presencia de objetos decorativos o vegetac dentro de la oficina.	ión		

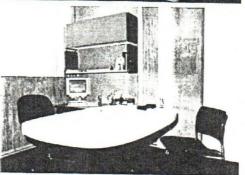

PARTE IV

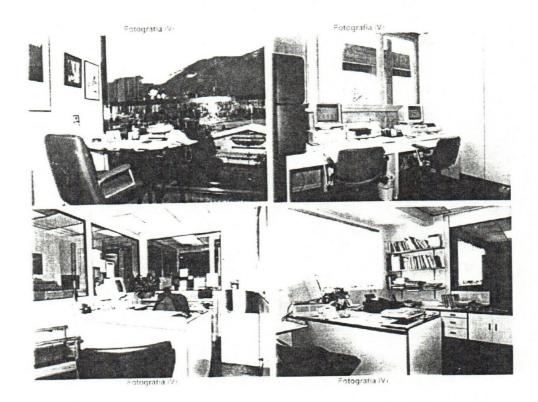

Utilizando la fotografía que usted escogió como la MÁS preferida, evalúe el agrado y la importancia de los siguientes elementos, siguiendo el procedimiento explicado en el ejemplo que aparece en la página anterior.

Recuerde contestar a todos los elementos.

ELEMENTOS	Desagrado		0	Agrado		Poco Mu Importante			7	
		V				\bigvee	V			V
NIVEL DE ILUMINACIÓN:				I					T	
Grado de iluminación existente en el ambiente.										
CONTROL DE LA ILUMINACIÓN:		П	T	1				TT	T	1
Posibilidad de controlar la entrada de luz natural a través de la presencia										
una cortina o persiana que pueda ser manipulada por el ocupante de la ofici	ina.									
VENTILACIÓN:								TT	T	T
Cambio de aire viciado por aire limpio. El sistema de ventilación puede natural o artificial o una combinación de ambas.	ser									
PERSONALIZACIÓN:			\top					П	_	T
Presencia de objetos personales que permiten identificar quién es el ocupa	ante								ĺ	
de una oficina.										
PRIVACIDAD:			T						T	
Control selectivo del acceso a uno mismo o al grupo al que uno pertene	ece.									
Puede ser visual o auditiva (posibilidad de no ser visto o de no ser oído).										
TAMAÑO DEL ESPACIO:		П	T					TT		
Dimensiones de la oficina, espacio para materiales y equipo para rec	cibir									
visitantes y moverse dentro de la oficina.										
COMPLEJIDAD:			T							
Número de elementos presentes en el ambiente.										
AGLOMERACIÓN:			T		TT					
Percepción subjetiva de falta de espacio.										
COHERENCIA:									T	
Sentido de orden u organización del espacio.										
TERRITORIALIDAD:			T						T	
Posesión de un espacio físico fijo y con límites visibles.										
TAMAÑO DE LAS VENTANAS:									i	T
Dimensiones de la ventana.										
VISTA AL EXTERIOR:			T						T	
Posibilidad de ver hacia un paisaje (natural o construido) a través de	e la								İ	1
ventana de la oficina.										
DECORACIÓN:									T	
Ornamentación en general, presencia de objetos decorativos o vegetado	ción									
dentro de la oficina.										

A N E X O E FOTOGRAFÍAS INSTRUMENTO DEFINITIVO




Fotografía III.a

Fotografia III4

A N E X O F INSTRUMENTO SUGERIDO

Instrumento definitivo

A continuación se presentan una serie de elementos que se encuentran presentes en su oficina. Evalúe, marcando con una X, que tanto le agradan y cuán importante es para usted. Recuerde contestar a todos los elementos.

ELEMENTOS	Desagrado	Agrado	Poco	Muy Important
	1	V	\checkmark	J
NIVEL DE ILUMINACIÓN: Grado de iluminación existente en el ambiente.				
CONTROL DE LA ILUMINACIÓN: Posibilidad de controlar la entrada de luz natural a través de la prese una cortina o persiana que pueda ser manipulada por el ocupante de la				
VENTILACIÓN: Cambio de aire viciado por aire limpio. El sistema de ventilación punatural o artificial o una combinación de ambas.	nede ser			
PERSONALIZACIÓN: Presencia de objetos personales que permiten identificar quién es el o de una oficina.	cupante		orași de la compania del compania de la compania de la compania del compania de la compania del compania de la compania de la compania de la compania del compania d	
PRIVACIDAD: Control selectivo del acceso a uno mismo o al grupo al que uno pe Puede ser visual o auditiva (posibilidad de no ser visto o de no ser oido				
TAMAÑO DEL ESPACIO: Dimensiones de la oficina, espacio para materiales y equipo para visitantes y moverse dentro de la oficina.	recibir		The state of the s	
COMPLEJIDAD: Número de elementos presentes en el ambiente.				
AGLOMERACIÓN: Percepción subjetiva de falta de espacio.				
COHERENCIA. Sentido de orden u organización del espacio.				
TERRITORIALIDAD: Posesión de un espacio físico fíjo y con límites visibles.				
TAMAÑO DE LAS VENTANAS: Dimensiones de la ventana.				
VISTA AL EXTERIOR: Posibilidad de ver hacia un paisaje (natural o construido) a travé ventana de la oficina.	es de la		Martin and Administration of the state of th	
DECORACIÓN: Ornamentación en general, presencia de objetos decorativos o vegentro de la oficina.	getación			

ANEXO G

ANÁLISIS DESCRIPTIVO DE LAS VARIABLES PREDICTORAS

Frecuencias de las variables sexo y carrera

Statistics

	1 N	N					
	Valid Mis						
CARR	288	0					
SEXO	288	0					

CARR

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid 1	89	30,9	30,9	30,9
2	88	30,6	30,6	61,5
3	111	38,5	38,5	100,0
Total	288	100,0	100,0	
Total	288	100,0		

SEXO

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid 0	145	50,3	50,3	50,3
1	143	49,7	49,7	100,0
Tota	al 288	100,0	100,0	
Total	288	100,0		

Descripción de las variables edad y experiencia laboral

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
EDAD	288	23	58	33,89	8,25
EXP_LAB	288	1	35	10,11	7,82
Valid N (listwise)	288				

ANEXO H

ANÁLISIS DESCRIPTIVO DE LOS ELEMENTOS DE LA FOTOGRAFÍA PREFERIDA

Análisis descriptivo de los elementos

Descriptive Statistics

					Std.
	N	Minimum	Maximum	Mean	Deviation
AGLO_AG	288	1,0	8,0	4,882	2,319
AGLO_IMP	288	1,0	6,0	4,760	1,253
COH_AG	288	1,0	8,0	6,104	1,971
COH_IMP	287	1,0	6,0	5,160	1,101
COM_AG	285	1,0	8,0	5,411	1,947
COM_IMP	285	1,0	6,0	4,175	1,355
CONI_AG	288	1,0	8,0	6,111	2,099
CONI_IMP	288	1,0	6,0	4,941	1,258
DEC_AG	288	1,0	8,0	5,455	2,088
DEC_IMP	288	1,0	6,0	4,642	1,236
ILU_AG	288	1,0	8,0	6,934	1,298
ILU_IMP	288	3,0	6,0	5,583	,693
PERS_AG	288	1,0	8,0	5,885	1,905
PERS_IMP	288	1,0	6,0	3,819	1,606
PRIV_AG	288	1,0	8,0	6,222	1,676
PRIV_IMP	288	1,0	6,0	4,733	1,331
TAM_AG	288	1,0	8,0	6,271	1,917
TAM_IMP	288	1,0	6,0	5,170	,982
TAMV_AG	287	1,0	8,0	6,648	1,779
TAMV_IMP	287	1,0	6,0	4,739	1,308
TERR_AG	288	1,0	8,0	6,236	1,649
TERR_IMP	288	1,0	6,0	4,712	1,214
VENT_AG	288	1,0	8,0	6,462	1,543
VENT_IMP	288	1,0	6,0	5,135	1,025
VIS_IMP	288	1,0	6,0	5,076	1,175
VIST_AG	288	1,0	8,0	6,611	1,938
Valid N (listwise)	283				

ANEXO I

ANÁLISIS DESCRIPTIVO DE LOS ELEMENTOS DE LA FOTOGRAFÍA MENOS PREFERIDA

Análisis descriptivo de los elementos

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
AGLO AG_	288	1,0	8,0	2,917	2,000
AGLO IM1	288	1,0	6,0	4,649	1,279
COH_AG_N	288	1,0	99,0	4,681	9,960
COH IMP	288	1,0	99,0	5,743	9,671
COM_AG_N	287	1,0	8,0	3,233	1,975
COM IMP	287	1,0	6.0	4,314	1,279
CONI AG	288	1,0	8,0	3,583	2,196
CONI_IM1	288	1,0	6,0	4,979	1,174
DEC_AG_N	288	1,0	8,0	2,910	2,048
DEC_IMP_	288	1,0	6,0	4,424	1,370
ILU_AG_N	288	1,0	8,0	4,628	2,317
ILU_IMP_	287	1,0	6,0	5,282	1,028
PERS_AG_	288	1,0	8,0	3,587	2,063
PERS_IM1	288	1,0	6,0	3,917	1,519
PRIV_AG_	287	1,0	8,0	3,575	2,165
PRIV_IM1	287	1,0	6,0	4,746	1,320
TAM_AG_N	288	1,0	8,0	3,417	2,158
TAM_IMP_	288	1,0	6,0	4,837	1,237
TAMV_AG_	288	1,0	8,0	3,569	2,391
TAMV_IM1	288	1,0	6,0	4,559	1,368
TERR_AG_	288	1,0	8,0	3,674	2,046
TERR_IM1	288	1,0	6,0	4,538	1,303
VENT_AG_	288	1,0	8,0	4,309	2,113
VENT_IM1	288	1,0	6,0	4,962	1,196
VIS_IMP_	288	1,0	6,0	4,792	1,348
VIST_AG_	288	1,0	8,0	3,569	2,614
Valid N (listwise)	285				

ANEXO J

CORRELACIÓN DE LOS PUNTAJES DE AGRADO E IMPORTANCIA DE LOS ELEMENTOS DE LA FOTOGRAFÍA MÁS PREFERIDA

Correlación de agrado

Correlations

		AGLO_AG	AGLO_IMP
Pearson	AGLO_AG	1,000	,184**
Correlation	AGLO_IMP	,184**	1,000
Sig.	AGLO_AG	,	,002
(2-tailed)	AGLO_IMP	,002	,
N	AGLO_AG	288	288
	AGLO_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de coherencia

Correlations

		COH_AG	COH_IMP
Pearson	COH_AG	1,000	,205**
Correlation	COH_IMP	,205**	1,000
Sig.	COH_AG	,	,000
(2-tailed)	COH_IMP	,000	,
N	COH_AG	288	287
	COH_IMP	287	287

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de complejidad

Correlations

		COM_AG	COM_IMP
Pearson	COM_AG	1,000	,213*
Correlation	COM_IMP	,213**	1,000
Sig.	COM_AG	,	,000
(2-tailed)	COM_IMP .	,000	,
N	COM_AG	285	285
	COM_IMP	285	285

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de control de iluminación

		CONI_AG	CONI_IMP
Pearson	CONI_AG	1,000	,193*
Correlation	CONI_IMP	,193**	1,000
Sig.	CONI_AG	,	,001
(2-tailed)	CONI_IMP	,001	,
N	CONI_AG	288	288
	CONI_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de decoración

Correlations

		DEC_AG	DEC_IMP
Pearson	DEC_AG	1,000	,109
Correlation	DEC_IMP	,109	1,000
Sig.	DEC_AG	,	,064
(2-tailed)	DEC_IMP	,064	,
N	DEC_AG	288	288
	DEC_IMP	288	288

Correlación de nivel de iluminación

Correlations

		ILU_AG	ILU_IMP
Pearson	ILU_AG	1,000	,105
Correlation	ILU_IMP	,105	1,000
Sig.	ILU_AG	,	,076
(2-tailed)	ILU_IMP	,076	,
N	ILU_AG	288	288
	ILU_IMP	288	288

Correlación de personalización

Correlations

		PERS_AG	PERS_IMP
Pearson	PERS_AG	1,000	,557*
Correlation	PERS_IMP	,557**	1,000
Sig.	PERS_AG	,	,000
(2-tailed)	PERS_IMP	,000	,
N	PERS_AG	288	288
	PERS_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de privacidad

		PRIV_AG	PRIV_IMP
Pearson	PRIV_AG	1,000	,391**
Correlation	PRIV_IMP	,391**	1,000
Sig.	PRIV_AG	,	,000
(2-tailed)	PRIV_IMP	,000	,
N	PRIV_AG	288	288
	PRIV_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de tamaño

Correlations

		TAM_AG	TAM_IMP
Pearson	TAM_AG	1,000	,133*
Correlation	TAM_IMP	,133*	1,000
Sig.	TAM_AG	,	,024
(2-tailed)	TAM_IMP	,024	,
N	TAM_AG	288	288
	TAM_IMP	288	288

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Correlación de tamaño de ventanas

Correlations

		TAMV_AG	TAMV_IMP
Pearson	TAMV_AG	1,000	,399*
Correlation	TAMV_IMP	,399**	1,000
Sig.	TAMV_AG	,	,000
(2-tailed)	TAMV_IMP	,000	,
N	TAMV_AG	287	287
	TAMV_IMP	287	287

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de territorialidad

Correlations

		TERR_AG	TERR_IMP
Pearson	TERR_AG	1,000	,290**
Correlation	TERR_IMP	,290**	1,000
Sig.	TERR_AG	,	,000
(2-tailed)	TERR_IMP.	,000	,
N	TERR_AG	288	288
	TERR_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de ventilación

		VENT_AG	VENT_IMP
Pearson	VENT_AG	1,000	,218**
Correlation	VENT_IMP	,218**	1,000
Sig.	VENT_AG	,	,000
(2-tailed)	VENT_IMP	,000	1
N	VENT_AG	288	288
	VENT_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de vista al exterior

		VIS_IMP	VIST_AG
Pearson	VIS_IMP	1,000	,371**
Correlation	VIST_AG	,371**	1,000
Sig.	VIS_IMP	,	,000
(2-tailed)	VIST_AG	,000	,
N	VIS_IMP	288	288
	VIST_AG	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

ANEXO K

CORRELACIÓN DE LOS PUNTAJES DE AGRADO E IMPORTANCIA DE LOS ELEMENTOS DE LA FOTOGRAFÍA MENOS PREFERIDA

Correlación de aglomeración

Correlations

		AGLO_AG_	AGLO_IM1
Pearson	AGLO_AG_	1,000	-,010
Correlation	AGLO_IM1	-,010	1,000
Sig.	AGLO_AG_	,	,864
(2-tailed)	AGLO_IM1	,864	,
N	AGLO_AG_	288	288
	AGLO_IM1	288	288

Correlación de coherencia

Correlations

		COH_AG_N	COH_IMP_
Pearson	COH_AG_N	1,000	,966**
Correlation	COH_IMP_	,966**	1,000
Sig.	COH_AG_N	,	,000
(2-tailed)	COH_IMP_	,000	,
N	COH_AG_N	288	288
	COH_IMP_	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de complejidad

Correlations

		COM_AG_N	COM_IMP_
Pearson	COM_AG_N	1,000	-,054
Correlation	COM_IMP_	-,054	1,000
Sig.	COM_AG_N	,	,362
(2-tailed)	COM_IMP_	,362	,
N	COM_AG_N	287	287
	COM_IMP_	287	287

Correlación de control de iluminación

		CONI_AG_	CONI_IM1
Pearson	CONI_AG_	1,000	,020
Correlation	CONI_IM1	,020	1,000
Sig.	CONI_AG_		,741
(2-tailed)	CONI_IM1	,741	
N	CONI_AG_	288	288
	CONI_IM1	288	288

Correlación de decoración

Correlations

		DEC_AG_N	DEC_IMP_
Pearson	DEC_AG_N	1,000	,066
Correlation	DEC_IMP_	,066	1,000
Sig.	DEC_AG_N	1	,265
(2-tailed)	DEC_IMP_	,265	,
N	DEC_AG_N	288	288
	DEC_IMP_	288	288

Correlación de nivel de iluminación

Correlations

		ILU_AG_N	ILU_IMP_
Pearson	ILU_AG_N	1,000	,149*
Correlation	ILU_IMP_	,149*	1,000
Sig. (2-tailed)	ILU_AG_N ILU_IMP_	,011	,011
N	ILU_AG_N	288	287
	ILU_IMP_	287	287

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Correlación de personalización

Correlations

		PERS_AG_	PERS_IM1
Pearson	PERS_AG_	1,000	,063
Correlation	PERS_IM1	,063	1,000
Sig.	PERS_AG_	,	,283
(2-tailed)	PERS_IM1	,283	,
N	PERS_AG_	288	288
	PERS_IM1	288	288

Correlación de privacidad

		PRIV_AG_	PRIV_IM1
Pearson	PRIV_AG_	1,000	,066
Correlation	PRIV_IM1	,066	1,000
Sig.	PRIV_AG_	,	,265
(2-tailed)	PRIV_IM1	,265	,
N	PRIV_AG_	287	287
	PRIV_IM1	287	287

Correlación de tamaño

Correlations

		TAM_AG_N	TAM_IMP_
Pearson	TAM_AG_N	1,000	,036
Correlation	TAM_IMP_	,036	1,000
Sig.	TAM_AG_N	,	,543
(2-tailed)	TAM_IMP_	,543	,
N	TAM_AG_N	288	288
	TAM_IMP_	288	288

Correlación de tamaño de ventanas

Correlations

		TAMV_AG_	TAMV_IM1
Pearson	TAMV_AG_	1,000	,025
Correlation	TAMV_IM1	,025	1,000
Sig.	TAMV_AG_	,	,675
(2-tailed)	TAMV_IM1	,675	,
N	TAMV_AG_	288	288
	TAMV_IM1	288	288

Correlación de territorialidad

Correlations

		TERR_AG_	TERR_IM1
Pearson	TERR_AG_	1,000	,112
Correlation	TERR_IM1	,112	1,000
Sig.	TERR_AG_	,	,058
(2-tailed)	TERR_IM1	,058	,
N	TERR_AG_	288	288
	TERR_IM1	288	288

Correlación de ventilación

		VENT_AG_	VENT_IM1
Pearson	VENT_AG_	1,000	,061
Correlation	VENT_IM1	,061	1,000
Sig.	VENT_AG_	,	,301
(2-tailed)	VENT_IM1	,301	,
N	VENT_AG_	288	288
	VENT_IM1	288	288

Correlación de vista al exterior

Dograan		VIST_AG_	VIS_IMP
Pearson Correlation	VIST_AG_	1,000	-,020
	VIS_IMP_	-,020	1,000
Sig. (2-tailed)	VIST_AG_	,	,740
(Z-taileu)	VIS_IMP_	,740	
IN	VIST_AG_	288	288
	VIS_IMP_	288	288

ANEXO L

CORRELACIÓN DE LOS PUNTAJES DE IMPORTANCIA DE LA FOTOGRAFÍA MÁS Y MENOS PREFERIDA

Correlación de aglomeración

Correlations

		AGLO_IM1	AGLO_IMP
Pearson	AGLO_IM1	1,000	,447*
Correlation	AGLO_IMP	,447**	1,000
Sig.	AGLO_IM1	,	,000
(2-tailed)	AGLO_IMP	,000	,
N	AGLO_IM1	288	288
	AGLO_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de coherencia

Correlations

		COH_IMP	COH_IMP_
Pearson	COH_IMP	1,000	,139*
Correlation	COH_IMP_	,139*	1,000
Sig.	COH_IMP	,	,019
(2-tailed)	COH_IMP_	,019	,
N	COH_IMP	287	287
	COH_IMP_	287	288

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Correlación de complejidad

Correlations

		COM_IMP	COM_IMP_
Pearson	COM_IMP	1,000	,360*
Correlation	COM_IMP_	,360**	1,000
Sig.	COM_IMP	,	,000
(2-tailed)	COM_IMP_	,000	,
N	COM_IMP	285	284
	COM_IMP_	284	287

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de control de iluminación

Correlations

		CONI_IM1	CONI_IMP
Pearson	CONI_IM1	1,000	,313*
Correlation	CONI_IMP	,313**	1,000
Sig.	CONI_IM1	,	,000
(2-tailed)	CONI_IMP	,000	,
N	CONI_IM1	288	288
	CONI_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de decoración

Correlations

		DEC_IMP	DEC_IMP_
Pearson	DEC_IMP	1,000	,454*
Correlation	DEC_IMP_	,454**	1,000
Sig.	DEC_IMP	,	,000
(2-tailed)	DEC_IMP_	,000	,
N	DEC_IMP	288	288
	DEC_IMP_	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de nivel de iluminación

Correlations

		ILU_IMP	ILU_IMP_
Pearson	ILU_IMP	1,000	,333*
Correlation	ILU_IMP_	,333**	1,000
Sig.	ILU_IMP	, ,	,000
(2-tailed)	ILU_IMP_	,000	,
N	ILU_IMP	288	287
	ILU_IMP_	287	287

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de personalización

		PERS_IM1	PERS_IMP
Pearson	PERS_IM1	1,000	,508*
Correlation	PERS_IMP	,508**	1,000
Sig.	PERS_IM1		,000
(2-tailed)	PERS_IMP	,000	,
N	PERS_IM1	288	288
	PERS_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de privacidad

Correlations

		PRIV_IM1	PRIV_IMP
Pearson	PRIV_IM1	1,000	,438*
Correlation	PRIV_IMP	,438**	1,000
Sig.	PRIV_IM1	,	,000
(2-tailed)	PRIV_IMP	,000	,
N	PRIV_IM1	287	287
	PRIV_IMP	287	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de tamaño

Correlations

		TAM_IMP	TAM_IMP_
Pearson	TAM_IMP	1,000	,447**
Correlation	TAM_IMP_	,447**	1,000
Sig.	TAM_IMP	,	,000
(2-tailed)	TAM_IMP_	,000	,
N	TAM_IMP	288	288
	TAM_IMP_	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de tamaño de ventanas

Correlations

		TAMV_IM1	TAMV_IMP
Pearson	TAMV_IM1	1,000	,503**
Correlation	TAMV_IMP	,503**	1,000
Sig.	TAMV_IM1	. ,	,000
(2-tailed)	TAMV_IMP	,000	,
N	TAMV_IM1	288	287
	TAMV_IMP	287	287

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de territorialidad

Correlations

		TERR_IM1	TERR_IMP
Pearson	TERR_IM1	1,000	,420**
Correlation	TERR_IMP	,420**	1,000
Sig.	TERR_IM1	,	,000
(2-tailed)	TERR_IMP	,000	,
N	TERR_IM1	288	288
	TERR_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de ventilación

Correlations

		VENT_IM1	VENT_IMP
Pearson	VENT_IM1	1,000	,544**
Correlation	VENT_IMP	,544**	1,000
Sig.	VENT_IM1	,	,000
(2-tailed)	VENT_IMP	,000	,
N	VENT_IM1	288	288
	VENT_IMP	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlación de vista al exterior

Correlations

		VIS_IMP	VIS_IMP_
Pearson	VIS_IMP	1,000	,505*
Correlation	VIS_IMP_	,505**	1,000
Sig.	VIS_IMP	,	,000
(2-tailed)	VIS_IMP_	,000	,
N	VIS_IMP	- 288	288
	VIS_IMP_	288	288

^{**.} Correlation is significant at the 0.01 level (2-tailed).

ANEXO M

ORDEN DE PREFERENCIA DE LAS FOTOGRAFÍAS POR DIMENSIÓN

DIMENSIONES	MENOS PREFERIDA			MÁS PREFERIDA
CONDICIONES	4	1	1	3
FÍSICAS				
CARACTERÍSTICAS	4	2	1	3
PSICOLOGICAS				
CARACTERÍSTICAS	1	3	2	2
ESPACIALES				
ELEMENTOS	2	3	4	1
ESTRUCTURALES				

ANEXO N

DIFERENCIA DE MEDIAS ENTRE LAS DIMENSIONES DE LA PREFERENCIA AMBIENTAL DE LA FOTOGRAFÍA MÁS PREFERIDA

T-Test

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	FISICAIM	5,2199	288	,6657	3,923E-02
	PSICOIM	4,4375	288	,8900	5,244E-02
Pair 2	ESPAIM	4,8053	288	,7867	4,636E-02
	FISICAIM	5,2199	288	,6657	3,923E-02
Pair 3	ESTRUIM	4,8206	288	,9361	5,516E-02
	FISICAIM	5,2199	288	,6657	3,923E-02
Pair 4	ESPAIM	4,8053	288	,7867	4,636E-02
	PSICOIM	4,4375	288	,8900	5,244E-02
Pair 5	ESTRUIM	4,8206	288	,9361	5,516E-02
	PSICOIM	4,4375	288	,8900	5,244E-02
Pair 6	ESPAIM	4,8053	288	,7867	4,636E-02
	ESTRUIM	4,8206	288	,9361	5,516E-02

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	FISICAIM & PSICOIM	288	,353	,000
Pair 2	ESPAIM & FISICAIM	288	,360	,000
Pair 3	ESTRUIM & FISICAIM	288	,427	,000
Pair 4	ESPAIM & PSICOIM	288	,517	,000
Pair 5	ESTRUIM & PSICOIM	288	,387	,000
Pair 6	ESPAIM & ESTRUIM	288	,362	,000

Paired Samples Test

		Paired Differences					
4			Std. Std. Error		Interva	nfidence I of the rence	
		Mean	Deviation	Mean	Lower	Upper	
Pair 1	FISICAIM - PSICOIM	,7824	,9041	5,327E-02	,6776	,8873	
Pair 2	ESPAIM - FISICAIM	-,4146	,8274	4,876E-02	-,5106	-,3187	
Pair 3	ESTRUIM - FISICAIM	-,3993	,8873	5,229E-02	-,5022	-,2964	
Pair 4	ESPAIM - PSICOIM	,3678	,8288	4,884E-02	,2716	,4639	
Pair 5	ESTRUIM - PSICOIM	,3831	1,0119	5,962E-02	,2657	,5005	
Pair 6	ESPAIM - ESTRUIM	-1,53E-02	,9805	5,778E-02	-,1291	9,839E-02	

Paired Samples Test

		t	df	Sig. (2-tailed)
Pair 1	FISICAIM - PSICOIM	14,687	287	,000
Pair 2	ESPAIM - FISICAIM	-8,504	287	,000
Pair 3	ESTRUIM - FISICAIM	-7,637	287	,000
Pair 4	ESPAIM - PSICOIM	7,530	287	,000
Pair 5	ESTRUIM - PSICOIM	6,425	287	,000
Pair 6	ESPAIM - ESTRUIM	-,265	287	,791

ANEXO O

DIFERENCIA DE MEDIAS ENTRE LAS DIMENSIONES DE LA PREFERENCIA AMBIENTAL DE LA FOTOGRAFÍA MENOS PREFERIDA

T-Test

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	FISICANO	5,0735	288	,8842	5,210E-02
	PSICONO	4,4369	288	1,0238	6,033E-02
Pair 2	ESPANO	4,8550	288	2,6706	,1574
	FISICANO	5,0735	288	,8842	5,210E-02
Pair 3	ESTRUCNO	4,5914	288	1,1256	6,632E-02
	FISICANO	5,0735	288	,8842	5,210E-02
Pair 4	ESPANO	4,8550	288	2,6706	,1574
	PSICONO	4,4369	288	1,0238	6,033E-02
Pair 5	ESTRUCNO	4,5914	288	1,1256	6,632E-02
	PSICONO	4,4369	288	1,0238	6,033E-02
Pair 6	ESPANO	4,8550	288	2,6706	,1574
	ESTRUCNO	4,5914	288	1,1256	6,632E-02

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	FISICANO & PSICONO	288	,475	,000
Pair 2	ESPANO & FISICANO	288	,303	,000
Pair 3	ESTRUCNO & FISICANO	288	,482	,000
Pair 4	ESPANO & PSICONO	288	,395	,000
Pair 5	ESTRUCNO & PSICONO	288	,586	,000
Pair 6	ESPANO & ESTRUCNO	288	,356	,000

Paired Samples Test

		Paired Differences			
			Std.	Std. Error	
		Mean	Deviation	Mean	
Pair 1	FISICANO - PSICONO	,6366	,9846	5,802E-02	
Pair 2	ESPANO - FISICANO	-,2185	2,5461	,1500	
Pair 3	ESTRUCNO - FISICANO	-,4821	1,0437	6,150E-02	
Pair 4	ESPANO - PSICONO	,4181	2,4537	,1446	
Pair 5	ESTRUCNO - PSICONO	,1545	,9815	5,784E-02	
Pair 6	ESPANO - ESTRUCNO	,2636	2,5014	,1474	

Paired Samples Test

		Paired Differences 95% Confidence Interval of the Difference		
		Lower	Upper	
Pair 1	FISICANO - PSICONO	,5224	,7508	
Pair 2	ESPANO - FISICANO	-,5138	7,684E-02	
Pair 3	ESTRUCNO - FISICANO	-,6031	-,3610	
Pair 4	ESPANO - PSICONO	,1335	,7027	
Pair 5	ESTRUCNO - PSICONO	4,068E-02	,2684	
Pair 6	ESPANO - ESTRUCNO	-2,65E-02	,5537	

Paired Samples Test

		t	df	Sig. (2-tailed)
Pair 1	FISICANO - PSICONO	10,972	287	,000
Pair 2	ESPANO - FISICANO	-1,456	287	,146
Pair 3	ESTRUCNO - FISICANO	-7,838	287	,000
Pair 4	ESPANO - PSICONO	2,892	287	,004
Pair 5	ESTRUCNO - PSICONO	2,672	287	,008
Pair 6	ESPANO - ESTRUCNO	1,788	287	,075

ANEXO P

REGRESIÓN MÚLTIPLE DE LAS VARIABLES PREDICTORAS PARA LOS ELEMENTOS DE LA FOTOGRAFÍA MÁS PREFERIDA

Regresión para aglomeración (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: AGLO_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,238ª	,057	,040	2,273

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	87,593	5	17,519	3,392	,005 ^a
	Residual	1456,393	282	5,165		
	Total	1543,986	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: AGLO_AG

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,990	,773		7,751	,000
	SEXO	-9,994E-02	,269	-,022	-,372	,710
	EDAD	-6,239E-02	,029	-,222	-2,146	,033
	EXP_LAB	3,336E-02	,031	,112	1,092	,276
	CARR1	1,149	,346	,229	3,320	,001
	CARR3	,943	,328	,198	2,878	,004

a. Dependent Variable: AGLO_AG

Regresión de aglomeración (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: AGLO_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,169ª	,028	,011	1,246

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12,800	5	2,560	1,649	,147a
	Residual	437,669	282	1,552		
	Total	450,469	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: AGLO_IMP

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,464	,424		12,899	,000
	SEXO	9,384E-02	,147	,038	,637	,525
	EDAD	-2,910E-02	,016	-,192	-1,826	,069
	EXP_LAB	9,833E-03	,017	,061	,587	,558
	CARR1	,297	,190	,110	1,568	,118
	CARR3	,114	,180	,044	,634	,526

a. Dependent Variable: AGLO_IMP

Regresión de coherencia (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: COH_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,082a	,007	-,011	1,982

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7,558	5	1,512	,385	,859 ^a
	Residual	1107,317	282	3,927		
	Total	1114,875	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: COH_AG

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6,279	,674		9,318	,000
	SEXO	-2,520E-03	,234	-,001	-,011	,991
	EDAD	-3,280E-03	,025	-,014	-,129	,897
	EXP LAB	-8,813E-03	,027	-,035	-,331	,741
	CARR1	,219	,302	,052	,727	,468
	CARR3	-,106	,286	-,026	-,370	,712

a. Dependent Variable: COH_AG

Regresión de coherencia (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: COH_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,103 ^a	,011	-,007	1,105

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3,687	5	,737	,604	,697a
	Residual	342,940	281	1,220		
	Total	346,627	286			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: COH_IMP

Coefficients^a

			Unstandardized Coefficients			
Model	Model		Std. Error	Beta	t	Sig.
1	(Constant)	5,196	,376		13,831	,000
	SEXO	2,387E-02	,131	,011	,182	,855
	EDAD	2,573E-03	,014	,019	,182	,856
	EXP_LAB	-1,537E-02	,015	-,109	-1,034	,302
	CARR1	8,834E-02	,169	,037	,524	,601
	CARR3	-1,551E-02	,159	-,007	-,097	,922

a. Dependent Variable: COH_IMP

Regresión de complejidad (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EXP_LAB, SEXO, CARR1, EDAD	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: COM_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,129 ^a	,017	-,001	1,948

a. Predictors: (Constant), CARR3, EXP_LAB, SEXO, CARR1, EDAD

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	18,044	5	3,609	,951	,449 ^a
	Residual	1058,925	279	3,795		
	Total	1076,968	284			

- a. Predictors: (Constant), CARR3, EXP_LAB, SEXO, CARR1, EDAD
- b. Dependent Variable: COM_AG

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,606	,663		8,460	,000
	SEXO	-7,220E-02	,232	-,019	-,312	,756
	EDAD	-7,066E-03	,025	-,030	-,283	,777
	EXP_LAB	-1,743E-02	,026	-,070	-,665	,506
	CARR1	,384	,298	,092	1,290	,198
	CARR3	,354	,283	,088	1,249	,213

a. Dependent Variable: COM_AG

Regresión de complejidad (importancia)

Variables Entered/Removedb

Model	Variables Entered	Variables Removed	Method
1	CARR3, EXP_LAB, SEXO, CARR1, EDAD	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: COM_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,205 ^a	,042	,025	1,338

a. Predictors: (Constant), CARR3, EXP_LAB, SEXO, CARR1, EDAD

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	21,847	5	4,369	2,441	,035ª
	Residual	499,381	279	1,790		
	Total	521,228	284			

- a. Predictors: (Constant), CARR3, EXP_LAB, SEXO, CARR1, EDAD
- b. Dependent Variable: COM_IMP

Coefficients^a

				Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,968	,455		10,917	,000
	SEXO	2,663E-02	,159	,010	,167	,867
	EDAD	-3,575E-02	,017	-,218	-2,088	,038
	EXP_LAB	1,176E-02	,018	,068	,654	,514
	CARR1	,434	,204	,149	2,121	,035
	CARR3	,395	,194	,142	2,030	,043

a. Dependent Variable: COM_IMP

Regresión de control de iluminación (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: CONI_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,116ª	,013	-,004	2,103

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16,868	5	3,374	,763	,577ª
	Residual	1247,576	282	4,424		
	Total	1264,444	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: CONI_AG

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,812	,715		8,127	,000
	SEXO	-,269	,249	-,064	-1,081	,281
	EDAD	1,398E-02	,027	,055	,520	,604
	EXP_LAB	8,587E-03	,028	,032	,304	,762
	CARR1	-,271	,320	-,060	-,845	,399
	CARR3	-,116	,303	-,027	-,384	.701

a. Dependent Variable: CONI_AG

Regresión de control de iluminación (importancia)

Variables Entered/Removed^b

Designation of the last of	Model	Variables Entered	Variables Removed	Method
	1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: CONI_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,209 ^a	,044	,027	1,241

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	19,828	5	3,966	2,576	,027 ^a
	Residual	434,168	282	1,540		
	Total	453,997	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: CONI_IMP

Coefficientsa

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,108	,422		12,105	,000
	SEXO	-,177	,147	-,071	-1,207	,228
No.	EDAD	-9,105E-03	,016	-,060	-,574	,567
	EXP_LAB	9,111E-03	,017	,057	,546	,585
	CARR1	,511	,189	,188	2,703	,007
	CARR3	-5,206E-02	,179	-,020	-,291	,771

a. Dependent Variable: CONI_IMP

Regresión de decoración (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: DEC_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,198 ^a	,039	,022	2,065

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	49,057	5	9,811	2,301	,045 ^a
	Residual	1202,356	282	4,264		
	Total	1251,413	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: DEC_AG

Coefficients^a

			Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,178	,702		5,951	,000
	SEXO	,622	,244	,149	2,550	,011
	EDAD	3,517E-02	,026	,139	1,332	,184
	EXP_LAB	-6,244E-03	,028	-,023	-,225	,822
	CARR1	-,367	,314	-,081	-1,169	,244
	CARR3	-,123	,298	-,029	-,413	,680

a. Dependent Variable: DEC_AG

Regresión de decoración (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: DEC_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,177ª	,031	,014	1,227

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	13,776	5	2,755	1,831	,107 ^a
	Residual	424,387	282	1,505		
	Total	438,163	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: DEC_IMP

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model	del B Std. Error		Std. Error	Beta	t	Sig.
1	(Constant)	4,120	,417		9,876	,000
	SEXO	8,119E-02	,145	,033	,560	,576
	EDAD	4,624E-03	,016	,031	,295	,768
	EXP_LAB	9,236E-03	,016	,058	,560	,576
	CARR1	,470	,187	,176	2,518	,012
	CARR3	,226	,177	,089	1,277	,203

a. Dependent Variable: DEC_IMP

Regresión de nivel de iluminación (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: ILU_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,143 ^a	,021	,003	,692

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression Residual	2,834 135,166	5 282	,567 ,479	1,183	,318 ^a
	Total	138,000	287	,475		

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: ILU_IMP

Coefficients^a

	Unstandardized Coefficients		Standardiz ed Coefficient s			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,868	,235		24,926	,000
1	SEXO	-,109	,082	-,078	-1,327	,186
1	EDAD	-1,060E-02	,009	-,126	-1,197	,232
1	EXP_LAB	8,194E-03	,009	,092	,880	,380
1	CARR1	-1,028E-02	,105	-,007	-,098	,922
	CARR3	,126	,100	,089	1,266	,207

a. Dependent Variable: ILU_IMP

Regresión de nivel de iluminación (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: ILU_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,079 ^a	,006	-,011	1,306

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression Residual Total	3,012 480,734 483,747	5 282 287	,602 1,705	,353	,880 ^a

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: ILU_AG

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model	Model		Std. Error	Beta	t	Sig.
1	(Constant)	6,585	,444		14,832	,000
	SEXO	-7,972E-02	,154	-,031	-,516	,606
	EDAD	1,014E-02	,017	,064	,607	,544
	EXP_LAB	-3,393E-03	,018	-,020	-,193	,847
	CARR1	7,076E-02	,199	,025	,356	,722
	CARR3	,149	,188	,056	,792	,429

a. Dependent Variable: ILU_AG

Regresión de personalización (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: PERS_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,188 ^a	,035	,018	1,887

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	36,747	5	7,349	2,063	,070a
	Residual	1004,471	282	3,562		
	Total	1041,219	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PERS_AG

Coefficients^a

Model		Unstandardized Coefficients		Standardiz ed Coefficient s		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,824	,642		9,075	,000
	SEXO	,537	,223	,141	2,407	,017
	EDAD	-2,421E-03	,024	-,010	-,100	,920
	EXP_LAB	-2,425E-02	,025	-,100	-,955	,340
	CARR1	,265	,287	,064	,922	,358
	CARR3	,103	,272	,026	,380	.704

a. Dependent Variable: PERS_AG

Regresión de personalización (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a		Enter

- a. All requested variables entered.
- b. Dependent Variable: PERS_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,249a	,062	,045	1,570

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	45,914	5	9,183	3,728	,003a
	Residual	694,697	282	2,463		
	Total	740,611	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PERS_IMP

Coefficients^a

Model				Standardiz ed Coefficient s		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	3,411	,534		6,391	,000
	SEXO	,420	,186	,131	2,265	.024
	EDAD	3,000E-04	,020	,002	,015	,988
	EXP_LAB	-2,203E-02	,021	-,107	-1,044	,297
	CARR1	,745	,239	,215	3,115	,002
	CARR3	,473	,226	.144	2,090	,037

a. Dependent Variable: PERS_IMP

Regresión de privacidad (agrado)

Variables Entered/Removedb

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: PRIV_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,114 ^a	,013	-,005	1,679

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	10,437	5	2,087	,740	,594 ^a
	Residual	795,341	282	2,820		
	Total	805,778	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PRIV_AG

Coefficients^a

			Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,758	,571		10,084	,000
	SEXO	-3,961E-02	,199	-,012	-,200	,842
1	EDAD	1,801E-02	,021	,089	,838	,402
	EXP_LAB	-4,407E-03	,023	-,021	-,195	,845
	CARR1	6,244E-02	,256	,017	,244	,807
	CARR3	-,264	,242	-,077	-1,090	,277

a. Dependent Variable: PRIV_AG

Regresión de privacidad (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: PRIV_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,194 ^a	,037	,020	1,317

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	19,041	5	3,808	2,194	,055 ^a
	Residual	489,373	282	1,735		
	Total	508,413	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: PRIV_IMP

Coefficients^a

			dardized cients	Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,147	,448		11,491	,000
1	SEXO	-,235	,156	-,088	-1,506	,133
1	EDAD	-9,428E-03	,017	-,058	-,560	,576
	EXP_LAB	1,371E-02	,018	,081	,774	,439
	CARR1	,116	,201	,040	,580	,562
	CARR3	-,398	,190	-,146	-2,095	,037

a. Dependent Variable: PRIV_IMP

Regresión de tamaño (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: TAM_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.109 ^a	.012	-,006	1,923

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12,557	5	2,511	,679	,639ª
	Residual	1042,318	282	3,696		
	Total	1054,875	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: TAM_AG

Coefficients^a

Model		Unstandardized Coefficients		Standardiz ed Coefficient s		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	6,691	,654		10,235	,000
	SEXO	-,153	,227	-,040	-,672	,502
	EDAD	-1,427E-02	,025	-,061	-,580	,562
	EXP_LAB	2,515E-02	,026	,103	,973	,332
	CARR1	-,329	,293	-,079	-1,124	,262
	CARR3	-3,598E-02	,277	-,009	-,130	,897

a. Dependent Variable: TAM_AG

Regresión de tamaño (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TAM_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,148 ^a	,022	,005	,980

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6,070	5	1,214	1,265	,279 ^a
	Residual	270,593	282	,960		
	Total	276,663	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TAM_IMP

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,347	,333		16,053	,000
	SEXO	-6,019E-02	,116	-,031	-,520	,604
	EDAD	-7,373E-03	,013	-,062	-,588	,557
	EXP_LAB	-4,900E-03	,013	-,039	-,372	,710
	CARR1	,283	,149	,133	1,897	,059
	CARR3	,168	,141	,084	1,192	,234

a. Dependent Variable: TAM_IMP

Regresión de tamaño de ventanas (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TAMV_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,129 ^a	,017	-,001	1,780

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	15,032	5	3,006	,949	,450 ^a
	Residual	890,425	281	3,169		
	Total	905,456	286			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TAMV_AG

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model	Model		Std. Error	Beta	t	Sig.
1	(Constant)	7,266	,606		11,985	,000
	SEXO	-,191	,211	-,054	-,905	,366
	EDAD	-2,257E-02	,023	-,105	-,986	,325
	EXP_LAB	3,132E-03	,024	,014	,129	.897
	CARR1	,323	,272	,084	1,186	,237
	CARR3	,285	,257	,078	1,112	,267

a. Dependent Variable: TAMV_AG

Regresión de tamaño de ventanas (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TAMV_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,317ª	,100	,084	1,252

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression Residual	49,069 440,332	5 281	9,814 1,567	6,263	,000 ^a
	Total	489,401	286			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TAMV_IMP

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,091	,426		11,941	,000
	SEXO	-3,711E-02	,148	-,014	-,250	.803
	EDAD	-4,366E-02	,016	-,276	-2,713	,007
	EXP_LAB	6,345E-02	,017	,378	3,731	,000
	CARR1	,770	,191	,272	4,024	,000
	CARR3	,699	,180	,261	3,871	.000

a. Dependent Variable: TAMV_IMP

Regresión de territorialidad (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: TERR_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,096 ^a	,009	-,008	1,655

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7,154	5	1,431	,522	,759 ^a
	Residual	772,790	282	2,740		
	Total	779,944	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TERR_AG

Coefficients^a

			Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	6,056	,563		10,758	,000	
	SEXO	-9,826E-02	,196	-,030	-,502	,616	
	EDAD	1,690E-02	,021	,085	,798	,425	
	EXP_LAB	-1,463E-02	,022	-,069	-,657	,511	
	CARR1	-,207	,252	-,058	-,821	,412	
	CARR3	-,341	,239	-,101	-1,430	,154	

a. Dependent Variable: TERR_AG

Regresión de territorialidad (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TERR_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,104ª	,011	-,007	1,218

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4,590	5	,918	,619	,686 ^a
	Residual	418,490	282	1,484		
	Total	423,080	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TERR_IMP

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,457	,414		10,759	,000
	SEXO	-2,002E-02	,144	-,008	-,139	,890
	EDAD	8,787E-03	,016	,060	,564	,573
	EXP_LAB	-7,434E-03	,016	-,048	-,454	,650
	CARR1	,212	,186	,081	1,140	,255
	CARR3	-6,012E-02	,176	-,024	-,342	,732

a. Dependent Variable: TERR_IMP

Regresión de ventilación (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: VENT_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,177ª	,031	,014	1,532

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	21,490	5	4,298	1,831	,107 ^a
	Residual	662,090	282	2,348		
	Total	683,580	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: VENT_AG

Coefficients^a

			Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	5,421	,521		10,404	,000	
	SEXO	-,128	,181	-,042	-,707	,480	
	EDAD	2,926E-02	,020	,156	1,493	,137	
	EXP_LAB	-2,909E-03	,021	-,015	-,141	,888,	
	CARR1	,309	,233	,093	1,322	,187	
	CARR3	,122	,221	,039	,552	,581	

a. Dependent Variable: VENT_AG

Regresión de ventilación (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: VENT_IMP

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,188ª	,035	,018	1,016

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	10,622	5	2,124	2,058	,071ª
	Residual	291,097	282	1,032		
	Total	301,719	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: VENT_IMP

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,992	,345		14,449	,000
	SEXO	6,124E-03	,120	,003	,051	,959
	EDAD	-5,401E-03	,013	-,043	-,416	,678
	EXP_LAB	4,502E-03	,014	,034	,330	,742
	CARR1	,484	,155	,218	3,127	,002
	CARR3	,333	,146	,159	2,276	,024

a. Dependent Variable: VENT_IMP

Regresión de vista al exterior (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB	,	Enter

a. All requested variables entered.

b. Dependent Variable: VIS_IMP

Model Summary

	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
r	1	,191 ^a	,036	,019	1,164

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	14,415	5	2,883	2,129	,062ª
	Residual	381,904	282	1,354		
	Total	396,319	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: VIS_IMP

Coefficients^a

			Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,323	,396		13,452	,000
	SEXO	-8,345E-02	,138	-,036	-,607	,545
1	EDAD	-2,346E-02	,015	-,165	-1,576	,116
	EXP LAB	3,598E-02	,016	,239	2,299	,022
	CARR1	.414	,177	,163	2,339	,020
	CARR3	,254	,168	,105	1,512	,132

a. Dependent Variable: VIS_IMP

Regresión de vista al exterior (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: VIST_AG

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,173ª	,030	,013	1,926

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	32,384	5	6,477	1,746	,124 ^a
	Residual	1046,060	282	3,709		
	Total	1078,444	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: VIST_AG

Coefficients^a

				Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	7,105	,655		10,849	,000
	SEXO	-,659	,228	-,170	-2,894	,004
	EDAD	-9,293E-03	,025	-,040	-,377	,706
	EXP LAB	1,289E-02	,026	,052	,498	,619
	CARR1	6,693E-02	,293	,016	,228	,820
	CARR3	-7,954E-03	,278	-,002	-,029	,977

a. Dependent Variable: VIST_AG

ANEXO Q

REGRESIÓN MÚLTIPLE DE LAS VARIABLES PREDICTORAS PARA LOS ELEMENTOS DE LA FOTOGRAFÍA MENOS PREFERIDA

Regresión de aglomeración (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: AGLO_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,162 ^a	,026	,009	1,991

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	29,998	5	6,000	1,513	,186ª
	Residual	1118,002	282	3,965		
	Total	1148,000	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: AGLO_AG_

Coefficients^a

			dardized cients	Standardiz ed Coefficient s		,
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3,100	,677		4,579	,000
	SEXO	9,666E-03	,235	,002	,041	,967
1	EDAD	-4,269E-03	,025	-,018	-,168	,867
	EXP_LAB	-3,001E-02	,027	-,117	-1,121	,263
	CARR1	,284	,303	,066	,935	,350
	CARR3	,446	,287	,109	1,554	,121

a. Dependent Variable: AGLO_AG_

Regresión de aglomeración (importancia)

Variables Entered/Removed^b

	Model	Variables Entered	Variables Removed	Method
-	1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: AGLO_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,069 ^a	,005	-,013	1,287

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2,228	5	,446	,269	,930a
	Residual	467,351	282	1,657		
	Total	469,580	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: AGLO_IM1

Coefficients^a

			dardized cients	Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,960	,438		11,331	,000
	SEXO	2,078E-02	,152	,008	,137	,892
	EDAD	-1,384E-02	,016	-,089	-,841	,401
	EXP_LAB	7,278E-03	,017	,044	,420	,674
	CARR1	7,644E-02	,196	,028	,390	,697
	CARR3	,131	,186	,050	,707	,480

a. Dependent Variable: AGLO_IM1

Regresión de coherencia (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: COH_AG_N

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,146 ^a	,021	,004	9,940

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	609,341	5	121,868	1,233	,294ª
	Residual	27863,270	282	98,806		
	Total	28472,611	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: COH_AG_N

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6,355	3,380		1,880	,061
	SEXO	-1,786	1,175	-,090	-1,520	,130
	EDAD	-8,698E-02	,127	-,072	-,684	,494
	EXP_LAB	9,370E-02	,134	,074	,701	,484
r	CARR1	2,802	1,514	,130	1,851	,065
	CARR3	,898	1,433	,044	,627	,531

a. Dependent Variable: COH_AG_N

Regresión de coherencia (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB	,	Enter

a. All requested variables entered.

b. Dependent Variable: COH_IMP_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,140a	,019	,002	9,661

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	522,413	5	104,483	1,119	,350 ^a
	Residual	26320,573	282	93,335		
	Total	26842,986	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: COH_IMP_

Coefficients^a

				Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	6,493	3,285		1,976	,049
	SEXO	-1,720	1,142	-,089	-1,506	,133
	EDAD	-5,067E-02	,124	-,043	-,410	,682
	EXP_LAB	5,450E-02	,130	,044	,420	,675
	CARR1	2,634	1,471	,126	1,790	,075
	CARR3	1,183	1,393	,060	,850	,396

a. Dependent Variable: COH_IMP_

Regresión de coherencia (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: COM_AG_N

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,194ª	,038	,020	1,955

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	41,892	5	8,378	2,193	,055 ^a
	Residual	1073,467	281	3,820		
	Total	1115,359	286			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: COM_AG_N

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,343	,665		6,527	,000
	SEXO	-,120	,232	-,030	-,516	,606
	EDAD	-4,381E-02	,025	-,183	-1,752	,081
	EXP_LAB	9,068E-03	,026	,036	,345	,730
	CARR1	,656	,299	,154	2,198	,029
	CARR3	,362	,283	,089	1,280	,202

a. Dependent Variable: COM_AG_N

Regresión de complejidad (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: COM_IMP_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,081 ^a	,007	-,011	1,286

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression Residual Total	3,079 464,698 467,777	5 281 286	,616 1,654	,372	,867ª

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: COM_IMP_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,237	,438		9,679	,000
	SEXO	8,595E-02	,152	,034	,564	,573
	EDAD	-4,377E-03	,016	-,028	-,266	,790
	EXP_LAB	1,221E-02	,017	,075	,706	,481
	CARR1	4,051E-03	,196	,001	,021	,984
	CARR3	,148	,186	,057	.797	,426

a. Dependent Variable: COM_IMP_

Regresión de control de iluminación (agrado)

Variables Entered/Removedb

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: CONI_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,081 ^a	.006	011	2,208

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8,980	5	1,796	,368	,870 ^a
	Residual	1375,020	282	4,876		
	Total	1384,000	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: CONI_AG_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model	Model		Std. Error	Beta	t	Sig.
1	(Constant)	4,008	,751		5,338	,000
	SEXO	-,165	,261	-,038	-,633	,527
	EDAD	-9,662E-03	,028	-,036	-,342	,733
	EXP_LAB	7,750E-03	,030	,028	,261	,794
	CARR1	-,307	,336	-,065	-,912	,362
	CARR3	2,079E-03	,318	,000	,007	,995

a. Dependent Variable: CONI_AG_

Regresión de control de iluminación (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: CONI_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,103 ^a	,011	-,007	1,179

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4,189	5	,838	,603	,698 ^a
	Residual	391,686	282	1,389		
	Total	395,875	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: CONI_IM1

Coefficients^a

			Unstandardized Coefficients			
Model	В	Std. Error	Beta	t	Sig.	
1	(Constant)	5,060	,401		12,626	,000
	SEXO	-,117	,139	-,050	-,836	,404
	EDAD	-5,610E-03	,015	-,039	-,372	,710
	EXP_LAB	1,583E-03	,016	,011	,100	,921
	CARR1	,213	,179	,084	1,187	,236
	CARR3	,222	,170	,092	1,304	,193

a. Dependent Variable: CONI_IM1

Regresión de decoración (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: DEC_AG_N

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,101 ^a	.010	007	2.055

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12,292	5	2,458	,582	,714ª
	Residual	1191,360	282	4,225		
	Total	1203,653	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: DEC_AG_N

Coefficients^a

				Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3,439	,699		4,920	,000
	SEXO	-,288	,243	-,070	-1,186	,237
	EDAD	-1,868E-02	,026	-,075	-,710	,478
	EXP_LAB	1,661E-02	,028	,063	,601	,548
	CARR1	,279	,313	,063	,893	,373
	CARR3	-1,952E-02	,296	005	-,066	.948

a. Dependent Variable: DEC_AG_N

Regresión de decoración (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: DEC_IMP_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.161 ^a	,026	,009	1,364

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	13,991	5	2,798	1,505	,188 ^a
	Residual	524,329	282	1,859		
	Total	538,319	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: DEC_IMP_

Coefficients^a

				Standardiz ed Coefficient s		
Model	Model		Std. Error	Beta	t	Sig.
1	(Constant)	4,296	,464		9,264	,000
	SEXO	,182	,161	,067	1,131	,259
	EDAD	-1,331E-02	,017	-,080	-,763	,446
	EXP_LAB	1,880E-02	,018	,107	1,026	,306
	CARR1	,408	,208	,138	1,967	,050
	CARR3	,446	,197	,159	2,271	,024

a. Dependent Variable: DEC_IMP_

Regresión de nivel de iluminación (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: ILU_AG_N

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,215 ^a	,046	,029	2,283

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	71,376	5	14,275	2,739	,020a
	Residual	1469,871	282	5,212		
	Total	1541,247	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: ILU_AG_N

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,051	,776		6,506	,000
	SEXO	-,868	,270	-,188	-3,217	,001
	EDAD	1,849E-02	,029	,066	,633	,527
	EXP_LAB	-2,356E-02	,031	-,079	-,767	,444
	CARR1	-,431	,348	-,086	-1,240	,216
	CARR3	-,640	,329	-,135	-1,945	,053

a. Dependent Variable: ILU_AG_N

Regresión de nivel de iluminación (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: ILU_IMP_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,194ª	,038	,020	1,017

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	11,365	5	2,273	2,196	,055 ^a
	Residual	290,775	281	1,035		
	Total	302,139	286			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: ILU_IMP_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s	,	
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,474	,348		15,748	,000
	SEXO	-9,494E-02	,120	-,046	-,788	,431
	EDAD	-1,923E-02	,013	-,155	-1,469	,143
	EXP_LAB	3,042E-02	,014	,232	2,211	,028
	CARR1	,213	,155	,096	1,373	,171
	CARR3	,350	,147	,166	2,379	,018

a. Dependent Variable: ILU_IMP_

Regresión de personalización (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: PERS_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,1442	,021	,003	2,060

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	25,465	5	5,093	1,201	,309a
	Residual	1196,364	282	4,242		
	Total	1221,830	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PERS_AG_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,213	,700		6,016	,000
	SEXO	1,476E-03	,244	,000	,006	,995
	EDAD	-3,358E-02	,026	-,134	-1,275	,204
	EXP_LAB	3,034E-02	,028	,115	1,095	,274
	CARR1	,610	,314	,137	1,943	,053
	CARR3	4,038E-02	,297	,010	,136	,892

a. Dependent Variable: PERS_AG_

Regresión de personaliazción (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: PERS_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,167a	,028	,011	1,511

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model	2	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	18,405	5	3,681	1,613	,157 ^a
	Residual	643,595	282	2,282		
	Total	662,000	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PERS_IM1

Coefficients^a

				Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3,558	,514		6,927	,000
	SEXO	,265	,179	,088	1,486	,138
	EDAD	-3,096E-03	,019	-,017	-,160	,873
	EXP_LAB	9,276E-03	,020	,048	,457	,648
	CARR1	,530	,230	,162	2,305	,022
	CARR3	,191	,218	,061	,877	,381

a. Dependent Variable: PERS_IM1

Regresión de privacidad (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: PRIV_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,159a	,025	,008	2,156

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	33,799	5	6,760	1,454	,205 ^a
	Residual	1306,340	281	4,649		
	Total	1340,139	286			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PRIV_AG_

Coefficients^a

			Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	4,169	,734		5,680	,000	
1	SEXO	1,803E-02	,255	,004	,071	,944	
	EDAD	-7,036E-03	,028	-,027	-,255	,799	
	EXP_LAB	-3,048E-02	,029	-,110	-1,051	,294	
	CARR1	-,317	,328	-,068	-,966	,335	
	CARR3	,106	,312	,024	,342	,733	

a. Dependent Variable: PRIV_AG_

Regresión de privacidad (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: PRIV_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,184 ^a	,034	,017	1,309

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16,880	5	3,376	1,970	,083 ^a
	Residual	481,552	281	1,714		
	Total	498,432	286			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: PRIV_IM1

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,920	,446		11,041	,000
	SEXO	-,159	,155	-,060	-1,024	,307
	EDAD	-6,826E-03	,017	-,043	-,408	,684
	EXP_LAB	3,598E-03	,018	,021	,204	,838
	CARR1	,441	,199	,155	2,213	,028
	CARR3	-9,887E-02	,189	-,036	-,523	,602

a. Dependent Variable: PRIV_IM1

Regresión de tamaño (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TAM_AG_N

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,142ª	,020	,003	2,154

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	27,112	5	5,422	1,168	,325 ^a
	Residual	1308,888	282	4,641		
	Total	1336,000	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TAM_AG_N

Coefficients^a

		Unstand Coeffi	lardized cients	Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,384	,733		5,985	,000
1	SEXO	-,144	,255	-,033	-,566	,572
	EDAD	-3,279E-02	,028	-,125	-1,190	,235
	EXP_LAB	-2,535E-04	,029	-,001	-,009	,993
	CARR1	,295	,328	,063	,898	,370
	CARR3	,329	,311	,074	1,059	,291

a. Dependent Variable: TAM_AG_N

Regresión de tamaño (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TAM_IMP_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,129 ^a	,017	-,001	1,238

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model	W.	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7,312	5	1,462	,955	,446 ^a
	Residual	432,018	282	1,532		
	Total	439,330	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TAM_IMP_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,879	,421		11,592	,000
	SEXO	-6,307E-02	,146	-,026	-,431	,667
	EDAD	-7,096E-03	,016	-,047	-,448	,654
	EXP_LAB	3,495E-03	,017	,022	,210	,834
	CARR1	,399	,188	,149	2,114	,035
	CARR3	.185	,178	,073	1,036	,301

a. Dependent Variable: TAM_IMP_

Regresión de tamaño de ventanas (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TAMV_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,127ª	,016	-,001	2,393

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	26,403	5	5,281	,923	,467ª
1	Residual	1614,208	282	5,724		
	Total	1640,611	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TAMV_AG_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,384	,814		5,389	,000
	SEXO	-,333	,283	-,070	-1,176	.241
	EDAD	-7,106E-03	,031	-,025	-,232	,817
	EXP_LAB	-7,356E-03	,032	-,024	-,229	,819
	CARR1	-,563	,364	-,109	-1,546	,123
	CARR3	-,415	,345	-,085	-1,204	,230

a. Dependent Variable: TAMV_AG_

Regresión de tamaño de ventanas (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: TAMV_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,222 ^a	,049	,032	1,346

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	26,365	5	5,273	2,912	,014 ^a
	Residual	510,632	282	1,811		
	Total	536,997	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: TAMV_IM1

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,145	,458		9,058	,000
	SEXO	,259	,159	,095	1,629	,104
	EDAD	-1,016E-02	,017	-,061	-,590	,555
	EXP_LAB	2,947E-02	,018	,168	1,628	,105
	CARR1	,570	,205	,193	2,783	,006
	CARR3	.404	,194	,144	2,083	,038

a. Dependent Variable: TAMV_IM1

Regresión de territorialidad (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TERR_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,089a	,008	-,010	2,056

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9,534	5	1,907	,451	,812ª
	Residual	1191,786	282	4,226		
	Total	1201,319	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TERR_AG_

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model	Model		Std. Error	Beta t	t	Sig.
1	(Constant)	3,966	,699		5,674	,000
	SEXO	-6,521E-02	,243	-,016	-,268	,789
	EDAD	-7,200E-03	,026	-,029	-,274	,784
	EXP_LAB	-1,352E-02	,028	-,052	-,489	,625
	CARR1	,232	,313	,053	,741	,459
	CARR3	,127	,296	,030	,427	,670

a. Dependent Variable: TERR_AG_

Regresión de territorialidad (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: TERR_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,160a	,026	,008	1,298

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12,472	5	2,494	1,481	,196 ^a
	Residual	475,108	282	1,685		
	Total	487,580	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: TERR_IM1

Coefficients^a

Model			Unstandardized Coefficients			
		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,674	,441		10,590	,000
	SEXO	-7,285E-02	,153	-,028	-,475	,635
	EDAD	-1,594E-02	,017	-,101	-,960	,338
	EXP_LAB	1,579E-02	,017	,095	,905	,366
	CARR1	,509	,198	,181	2,575	,011
	CARR3	,320	,187	,120	1,711	,088

a. Dependent Variable: TERR_IM1

Regresión de ventilación (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: VENT_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,166 ^a	,028	,010	2,102

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	35,266	5	7,053	1,596	,161 ^a
	Residual	1246,231	282	4,419		
	Total	1281,497	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: VENT_AG_

Coefficientsa

				Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,875	,715		6,819	,000
	SEXO	-,645	,249	-,153	-2,594	,010
	EDAD	-1,719E-03	,027	-,007	-,064	,949
	EXP_LAB	-3,010E-03	,028	-,011	-,106	,915
	CARR1	-,338	,320	-,074	-1,057	,291
	CARR3	-,136	,303	-,031	-,448	,655

a. Dependent Variable: VENT_AG_

Regresión de ventilación (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP_LAB ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: VENT_IM1

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,166ª	,028	,010	1,190

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	11,319	5	2,264	1,599	,160a
	Residual	399,261	282	1,416		
	Total	410,580	287			

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

b. Dependent Variable: VENT_IM1

Coefficients^a

		Unstandardized Coefficients		Standardiz ed Coefficient s		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5,370	,405		13,273	,000
	SEXO	-,161	,141	-,067	-1,144	,253
	EDAD	-2,495E-02	,015	-,172	-1,640	,102
	EXP_LAB	3,355E-02	,016	,219	2,097	,037
	CARR1	,282	,181	,109	1,557	,121
	CARR3	,235	,172	,096	1,372	,171

a. Dependent Variable: VENT_IM1

Regresión de vista al exterior (agrado)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: VIST_AG_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,129 ^a	,017	-,001	2,615

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	32,876	5	6,575	,962	,442a
	Residual	1927,735	282	6,836		
	Total	1960,611	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: VIST_AG_

Coefficients^a

				Standardiz ed Coefficient s			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	3,280	,889		3,690	,000	
	SEXO	-,268	,309	-,051	-,869	,386	
	EDAD	3,190E-02	,033	,101	,954	,341	
	EXP_LAB	-2,372E-02	,035	-,071	-,675	,501	
	CARR1	-,750	,398	-,133	-1,884	,061	
	CARR3	-,486	,377	-,091	-1,288	,199	

a. Dependent Variable: VIST_AG_

Regresión de vista al exterior (importancia)

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	CARR3, EDAD, SEXO, CARR1, EXP LAB ^a	,	Enter

- a. All requested variables entered.
- b. Dependent Variable: VIS_IMP_

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,177a	,031	,014	1,338

a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16,329	5	3,266	1,823	,108 ^a
	Residual	505,171	282	1,791		
	Total	521,500	287			

- a. Predictors: (Constant), CARR3, EDAD, SEXO, CARR1, EXP_LAB
- b. Dependent Variable: VIS_IMP_

Coefficients^a

			Unstandardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4,760	,455		10,460	,000
	SEXO	-,271	,158	-,101	-1,714	,088
	EDAD	-8,179E-03	,017	-,050	-,478	,633
	EXP_LAB	2,169E-02	,018	,126	1,205	,229
	CARR1	,285	,204	,098	1,396	,164
	CARR3	,352	,193	,127	1,826	,069

a. Dependent Variable: VIS_IMP_

ANEXO R

ANOVA FACTORIAL DE LOS ELEMENTOS DE LA FOTOGRAFÍA MÁS Y MENOS PREFERIDA

ANOVA DE LOS ELEMENTOS DE LA FOTOGRAFÍA MÁS PREFERIDA

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
AGLO_AG	Between Groups	55,565	2	27,783	5,320	,005
	Within Groups	1488,421	285	5,223		
	Total	1543,986	287			
AGLO_IMP	Between Groups	2,714	2	1,357	,864	,423
	Within Groups	447,755	285	1,571		
	Total	450,469	287			
COH_AG	Between Groups	5,108	2	2,554	,656	,520
	Within Groups	1109,767	285	3,894		
	Total	1114,875	287			
COH_IMP	Between Groups	,575	2	,287	,236	,790
	Within Groups	346,052	284	1,218		
	Total	346,627	286			
COM_AG	Between Groups	7,812	2	3,906	1,030	,358
	Within Groups	1069,156	282	3,791		
	Total	1076,968	284			
COM_IMP	Between Groups	7,494	2	3,747	2,057	,130
	Within Groups	513,734	282	1,822		
	Total	521,228	284			
CONI_AG	Between Groups	2,619	2	1,309	,296	,744
	Within Groups	1261,826	285	4,427		
	Total	1264,444	287			
CONI_IMP	Between Groups	17,039	2	8,520	5,557	,004
	Within Groups	436,957	285	1,533		
	Total	453,997	287			
DEC_AG	Between Groups	4,290	2	2,145	,490	,613
	Within Groups	1247,124	285	4,376		
	Total	1251,413	287			
DEC_IMP	Between Groups	10,158	2	5,079	3,382	,035
	Within Groups	428,005	285	1,502		
	Total	438,163	287			

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
TLU_AG	Between Groups	1,387	2	,694	,410	,664
	Within Groups	482,359	285	1,692		
	Total	483,747	287			
ILU_IMP	Between Groups	1,290	2	,645	1,345	,262
	Within Groups	136,710	285	,480		
	Total	138,000	287			
PERS_AG	Between Groups	3,026	2	1,513	,415	,661
	Within Groups	1038,193	285	3,643		
	Total	1041,219	287			
PERS_IMP	Between Groups	24,397	2	12,199	4,854	,008
	Within Groups	716,214	285	2,513		
	Total	740,611	287			
PRIV_AG	Between Groups	6,094	2	3,047	1,086	,339
	Within Groups	799,684	285	2,806		
	Total	805,778	287			
PRIV_IMP	Between Groups	13,946	2	6,973	4,019	,019
_	Within Groups	494,467	285	1,735		
	Total	508,413	287			
TAM_AG	Between Groups	6,678	2	3,339	,908	,405
25	Within Groups	1048,197	285	3,678		
	Total	1054,875	287			
TAM_IMP	Between Groups	3,277	2	1,639	1,708	,183
	Within Groups	273,386	285	,959		
	Total	276,663	287			
TAMV_AG	Between Groups	4,758	2	2,379	,750	,473
	Within Groups	900,699	284	3,171		
	Total	905,456	286			
TAMV_IMP	Between Groups	26,335	2	13,167	8,076	,000
	Within Groups	463,066	284	1,631		
	Total	489,401	286			
TERR_AG	Between Groups	4,717	2	2,358	,867	,421
	Within Groups	775,228	285	2,720		
	Total	779,944	287			

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
TERR_IMP	Between Groups	4,088	2	2,044	1,390	,251
	Within Groups	418,991	285	1,470		
	Total	423,080	287			
VENT_AG	Between Groups	6,002	2	3,001	1,262	,285
	Within Groups	677,577	285	2,377		
	Total	683,580	287			
VENT_IMP	Between Groups	10,440	2	5,220	5,108	,007
	Within Groups	291,278	285	1,022		
	Total	301,719	287			
VIST_AG	Between Groups	,165	2	8,227E-02	,022	,978
	Within Groups	1078,280	285	3,783		
	Total	1078,444	287			
VIS_IMP	Between Groups	6,223	2	3,111	2,273	,105
	Within Groups	390,097	285	1,369	100	
	Total	396,319	287			

Tukey HSD

			Mean			95% Confidence Interval	
Dependent			Difference	0.15		Lower	Upper
Variable	(I) CAR4	(J) CAR4	(I-J)	Std. Error	Sig.	Bound	Bound
AGLO_AG	-1,00	,00	,872*	,326	,021	,107	1,636
		1,00	-,159	,325	,876	-,921	,603
	,00	-1,00	-,872*	,326	,021	-1,636	-,107
1,00		1,00	-1,031*	,344	,008	-1,836	-,226
	1,00	-1,00	,159	,325	,876	-,603	,921
		,00	1,031*	,344	,008	,226	1,836
AGLO_IMP	-1,00	,00	7,064E-02	,179	,918	-,349	,490
		1,00	-,169	,178	,610	-,587	,249
	,00	-1,00	-7,064E-02	,179	,918	-,490	,349
		1,00	-,240	,188	,411	-,681	,202
	1,00	-1,00	,169	,178	,610	-,249	,587
		,00	,240	,188	,411	-,202	,681
COH_AG	-1,00	,00	-,107	,282	,924	-,767	,554
		1,00	-,319	,281	,491	-,977	,339
	,00	-1,00	,107	,282	,924	-,554	,767
		1,00	-,213	,297	,754	-,908	,483
	1,00	-1,00	,319	,281	,491	-,339	,977
		,00	,213	,297	,754	-,483	,908
COH_IMP	-1,00	,00	-1,024E-02	,158	,998	-,380	,359
		1,00	-,101	,158	,797	-,470	,268

Tukey HSD

			Mean			95% Confidence Interval		
Dependent Variable	(I) CAR4	(J) CAR4	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
COH_IMP	,00	-1,00	1,024E-02	,158	,998	-,359	,380	
		1,00	-9,091E-02	,166	,848	-,481	,299	
	1,00	-1,00	,101	,158	,797	-,268	,470	
		,00	9,091E-02	,166	,848	-,299	,481	
COM AG	-1,00	,00	,353	,280	,418	-,303	1,009	
_		1,00	-1,433E-02	,278	,999	-,666	,638	
	.00	-1,00	-,353	,280	,418	-1,009	,303	
	,	1,00	-,367	,294	,423	-1,055	,32	
	1,00	-1,00	1,433E-02	,278	,999	-,638	,666	
	1,00	,00	,367	,294	,423	-,321	1,055	
COM IMP	-1,00	,00	,344	,194	,178	-,111	,799	
OOM_IIM	1,00	1,00	-1,691E-02	,193	,996	-,469	,435	
	,00	-1,00	-,344	,194	,178	-,799		
	,00	1,00	A Comment of the Comm	100			,111	
	1.00	-1,00	-,361	,203	,178	-,838	,116	
	1,00		1,691E-02	,193	,996	-,435	,469	
CONIL AC	1.00	,00	,361	,203	,178	-,116	,838	
CONI_AG	-1,00	,00	-8,077E-02	,300	,961	-,785	,623	
		1,00	,158	,299	,858	-,544	,859	
	,00	-1,00	8,077E-02	,300	,961	-,623	,785	
1,00		1,00	,238	,316	,731	-,503	,980	
	1,00	-1,00	-,158	,299	,858,	-,859	,544	
		,00	-,238	,316	,731	-,980	,503	
CONI_IMP	-1,00	,00	-5,006E-02	,177	,957	-,464	,364	
		1,00	-,547*	,176	,005	-,960	-,134	
	,00	-1,00	5,006E-02	,177	,957	-,364	,464	
		1,00	-,497*	,186	,021	-,933	-6,029E-02	
	1,00	-1,00	,547*	,176	,005	,134	,960	
		,00	,497*	,186	,021	6,029E-02	,933	
DEC_AG	-1,00	,00	-,134	,299	,895	-,834	,566	
		1,00	,176	,298	,824	-,521	,874	
	,00	-1,00	,134	,299	,895	-,566	,834	
		1,00	,310	,314	,586	-,427	1,047	
	1,00	-1,00	-,176	,298	,824	-,874	,521	
		,00	-,310	,314	,586	-1,047	,427	
DEC IMP	-1,00	,00	,222	,175	,414	-,188	,631	
	.,	1,00	-,257	,174	,303	-,666	,152	
	,00	-1,00	-,222	,175	,414	-,631	,188	
	,00	1,00	-,479*	,184	,025	-,910	-4,678E-02	
	1,00	-1,00	,257	,174	,303	-,152	,666	
	1,00	,00	,479*				1	
ILU_AG	-1,00	,00		,184	,025	4,678E-02	,910	
ILU_AG	-1,00		,168	,186	,637	-,267	,603	
	-00	1,00	7,642E-02	,185	,910	-,357	,510	
	,00	-1,00	-,168	,186	,637	-,603	,267	
	1.00	1,00	-9,168E-02	,196	,886	-,550	,367	
	1,00	-1,00	-7,642E-02	,185	,910	-,510	,357	
		,00	9,168E-02	,196	,886	-,367	,550	
ILU_IMP	-1,00	,00	,121	,099	,438	-,110	,353	
		1,00	,150	,099	,281	-8,115E-02	,381	

Tukey HSD

			Mean			95% Confidence Interval		
Dependent Variable	(I) CAR4	(J) CAR4	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
ILU_IMP	,00	-1,00	-,121	,099	,438	-,353	,110	
		1,00	2,860E-02	,104	,959	-,215	,273	
	1,00	-1,00	-,150	,099	,281	-,381	8,115E-02	
		,00	-2,860E-02	,104	,959	-,273	,215	
PERS_AG	-1,00	,00	6,276E-02	,272	,971	-,576	,70	
_		1,00	-,187	,272	,770	-,823	,450	
	,00	-1,00	-6,276E-02	,272	,971	-,701	,576	
		1,00	-,250	,287	,659	-,922	,423	
	1,00	-1,00	,187	,272	,770	-,450	,823	
	,	,00	,250	,287	,659	-,423	,922	
PERS_IMP	-1,00	,00	,444	,226	,121	-8,589E-02	,975	
1 2110	.,,••	1,00	-,292	,226	,397	-,821	,236	
	,00	-1,00	-,444	,226	,121	-,975	8,589E-0	
	,00	1,00	-,737*	,238	,006	-1,295	-,178	
	1,00	-1,00	,292	,226	,397	-,236	,82	
	1,00	,00	,737*	,238	,006	,178	1,29	
DDIV/ AC	-1,00	,00	-,239	,239	,577	-,799	,32	
PRIV_AG	-1,00			,239	,334	-,896	,22	
		1,00	-,337				,799	
	,00	-1,00	,239	,239	,577	-,321	1	
	1.00	1,00	-9,793E-02	,252	,920	-,688	,49:	
	1,00	-1,00	,337	,238	,334	-,222	,896	
		,00	9,793E-02	,252	,920	-,492	,688	
PRIV_IMP	-1,00	,00	-,393	,188	,092	-,833	4,781E-0	
		1,00	-,496*	,187	,022	-,935	-5,635E-02	
	,00	-1,00	,393	,188	,092	-4,781E-02	,83	
		1,00	-,103	,198	,862	-,567	,36	
	1,00	-1,00	,496*	,187	,022	5,635E-02	,93	
		,00	,103	,198	,862	-,361	,56	
TAM_AG	-1,00	,00	-4,638E-02	,274	,984	-,688	,59	
		1,00	,306	,273	,500	-,333	,94	
	,00	-1,00	4,638E-02	,274	,984	-,595	,68	
		1,00	,353	,288	,439	-,323	1,02	
	1,00	-1,00	-,306	,273	,500	-,946	,33	
		,00	-,353	,288	,439	-1,028	,32	
TAM IMP	-1,00	,00	,166	,140	,459	-,161	,49	
_		1,00	-,103	,139	,740	-,430	,22	
	,00	-1,00	-,166	,140	,459	-,494	,16	
	,	1,00	-,269	,147	,160	-,614	7,567E-0	
	1,00	-1,00	,103	,139	,740	-,224	,43	
	.,	,00	,269	,147	,160	-7,567E-02	,61	
TAMV_AG	-1,00	,00	,275	,254	,525	-,321	,87	
I WINT TO	1,50	1,00	-8,907E-03	,254	,999	-,605	,58	
	,00	-1,00	-,275	,254	,525	-,871	,32	
	,00	1,00	-,275	,268	,540	-,913	,34	
	1.00		8,907E-03				,60	
	1,00	-1,00	1	,254	,999	-,587		
TANK (INC.	1.00	,00	,284	,268	,540	-,345	,91	
TAMV_IMP	-1,00	,00	,635*		,001	,208	1,06	
		1,00	-4,699E-02	,182	,964	-,474	,38	

Tukey HSD

			Mean			95% Cor Inte	
Dependent Variable	(I) CAR4	(J) CAR4	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
TAMV_IMP	,00	-1,00	-,635*	,182	,001	-1,062	-,208
		1,00	-,682*	,193	,001	-1,133	-,231
	1,00	-1,00	4,699E-02	,182	,964	-,380	,474
		,00	,682*	,193	,001	,231	1,133
TERR_AG	-1,00	,00	-,310	,235	,386	-,862	,242
		1,00	-,137	,235	,829	-,687	,413
	,00	-1,00	,310	,235	,386	-,242	,862
		1,00	,173	,248	,764	-,408	,754
	1,00	-1,00	,137	,235	,829	-,413	,687
		,00	-,173	,248	,764	-,754	,408
TERR_IMP	-1,00	,00	-4,648E-02	,173	,961	-,452	,359
		1,00	-,275	,173	,248	-,679	,129
	,00	-1,00	4,648E-02	,173	,961	-,359	,452
		1,00	-,229	,182	,421	-,656	,199
	1,00	-1,00	,275	,173	,248	-,129	,679
		,00	,229	,182	,421	-,199	,656
VENT_AG -1,0	-1,00	,00	,166	,220	,730	-,349	,682
		1,00	-,201	,219	,629	-,715	,313
	,00	-1,00	-,166	,220	,730	-,682	,349
		1,00	-,368	,232	,252	-,911	,176
	1,00	-1,00	,201	,219	,629	-,313	,71
		,00	,368	,232	,252	-,176	,91
VENT_IMP	-1,00	,00	,326	,144	,062	-1,263E-02	,664
		1,00	-,148	,144	,559	-,485	,189
	,00	-1,00	-,326	,144	,062	-,664	1,263E-0
		1,00	-,473*	,152	,005	-,830	-,11
	1,00	-1,00	,148	,144	,559	-,189	,48
		,00	,473*	,152	,005	,117	,83
VIST_AG	-1,00	,00	3,307E-02	,278	,992	-,618	,684
		1,00	-2,784E-02	,277	,994	-,676	,62
	,00	-1,00	-3,307E-02	,278	,992	-,684	,618
		1,00	-6,090E-02	,292	,976	-,746	,62
	1,00	-1,00	2,784E-02	,277	,994	-,621	,67
		,00	6,090E-02	,292	,976	-,624	,74
VIS_IMP	-1,00	,00	,224	,167	,372	-,167	,61
		1,00	-,148	,166	,647	-,538	,24:
	,00	-1,00	-,224	,167	,372	-,615	,16
		1,00	-,372	,176	,087	-,784	4,002E-0
	1,00	-1,00	,148	,166	,647	-,242	,538
		,00	,372	,176	,087	-4,002E-02	,78

^{*.} The mean difference is significant at the .05 level.

Aglomeración (agrado)

Tukey HSDa,u

		Subset for alpha = .0		
CAR4	N	1	2	
,00	88	4,227		
-1,00	111		5,099	
1,00	89		5,258	
Sig.		1,000	,881	

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Aglomeración (importancia)

Tukey HSDa,u

CAR4	N	Subset for alpha = .05
,00	88	4,659
-1,00	111	4,730
1,00	89	4,899
Sig.		,385

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Coherencia (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	5,973
,00	88	6,080
1,00	89	6,292
Sig.		,505

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Coherencia (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	5,126
,00	88	5,136
1,00	88	5,227
Sig.		,804

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,529
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Complejidad (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	87	5,161
-1,00	109	5,514
1,00	89	5,528
Sig.		,399

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,031
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Complejidad (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	87	3,931
-1,00	109	4,275
1,00	89	4,292
Sig.		,158

- a. Uses Harmonic Mean Sample Size = 94,031
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Control de iluminación (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	5,978
-1,00	111	6,135
,00	88	6,216
Sig.		,715

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Control de iluminación (importancia)

Tukey HSDa,u

	Subset for alpha :		oha = .05
CAR4	N	1	2
-1,00	111	4,757	
,00	88	4,807	
1,00	89		5,303
Sig.		,958	1,000

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Decoración (agrado)

Tukey HSD^{d,U}

CAR4	N	Subset for alpha = .05
1,00	89	5,292
-1,00	111	5,468
,00	88	5,602
Sig.		,563

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Decoración (importancia)

Tukey HSDa,u

		Subset for alpha = .0	
CAR4	N	1	2
,00	88	4,409	
-1,00	111	4,631	4,631
1,00	89		4,888
Sig.		,426	,318

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Nivel de iluminación (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	6,841
1,00	89	6,933
-1,00	111	7,009
Sig.		,647

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Nivel de iluminación (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	5,517
,00	88	5,545
-1,00	111	5,667
Sig.		.296

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Personalización (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	5,784
-1,00	111	5,847
1,00	89	6,034
Sig.		,640

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Personalización (importancia)

Tukey HSDa,u

		Subset for alpha = .0	
CAR4	N	1	2
,00	88	3,420	
-1,00	111	3,865	3,865
1,00	89		4,157
Sig.		,130	,412

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Privacidad (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	6,045
,00	88	6,284
1,00	89	6,382
Sig.		,348

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Privacidad (importancia)

Tukey HSDa,u

		Subset for all	Subset for alpha = .05		
CAR4	N	1	2		
-1,00	111	4,459			
,00	88	4,852	4,852		
1,00	89		4,955		
Sig.		,100	,853		

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	6,045
-1,00	111	6,351
,00	88	6,398
Sig.		,414

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	
,00	88	5,023	
-1,00	111	5,189	
1,00	89	5,292	
Sig.		,140	

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño de ventanas (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	6,455
-1,00	111	6,730
1,00	88	6,739
Sig.		,516

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,529
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño de ventanas (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	2
,00	88	4,284	
-1,00	111		4,919
1,00	88		4,966
Sig.		1,000	,965

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,529
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Territorialidad (agrado)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	
-1,00	111	6,099	
1,00	89	6,236	
,00	88	6,409	
Sig.		,398	

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Territorialidad (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	4,613
,00	88	4,659
1,00	89	4,888
Sig.		,262

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Ventilación (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	6,284
-1,00	111	6,450
1,00	89	6,652
Sig.		,228

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Ventilación (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	2
,00	88	4,864	
-1,00	111	5,189	5,189
1,00	89		5,337
Sig.		,068	,572

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Vista al exterior (agrado)

Tukey HSDa,u

CAR4	N	Subset for alpha = .05
,00	88	6,580
-1,00	111	6,613
1,00	89	6,640
Sig.		,975

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Vista al exterior (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	
,00	88	4,875	
-1,00	111	5,099	
1,00	89	5,247	
Sig.		,073	

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

ANOVA DE LOS ELEMENTOS DE LA FOTOGRAFÍA MENOS PREFERIDA

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
AGLO_AG_	Between Groups	9,929	2	4,965	1,243	,290
	Within Groups	1138,071	285	3,993		
	Total	1148,000	287			
AGLO_IM1	Between Groups	,624	2	,312	,189	,827
	Within Groups	468,956	285	1,645		
	Total	469,580	287			
COH_AG_N	Between Groups	327,040	2	163,520	1,656	,193
	Within Groups	28145,571	285	98,756		
	Total	28472,611	287			
COH_IMP_	Between Groups	291,847	2	145,924	1,566	,211
	Within Groups	26551,139	285	93,162		
	Total	26842,986	287			
COM_AG_N	Between Groups	14,589	2	7,294	1,882	,154
	Within Groups	1100,770	284	3,876		
	Total	1115,359	286			
COM_IMP_	Between Groups	1,243	2	,621	,378	,685
	Within Groups	466,534	284	1,643		
	Total	467,777	286			
CONI_AG_	Between Groups	6,451	2	3,225	,667	,514
	Within Groups	1377,549	285	4,834		
	Total	1384,000	287			
CONI_IM1	Between Groups	2,857	2	1,429	1,036	,356
	Within Groups	393,018	285	1,379		
	Total	395,875	287			
DEC_AG_N	Between Groups	4,203	2	2,101	,499	,607
	Within Groups	1199,450	285	4,209		
	Total	1203,653	287			
DEC_IMP_	Between Groups	9,691	2	4,845	2,612	,075
	Within Groups	528,629	285	1,855		
	Total	538,319	287			

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
TLU_AG_N	Between Groups	14,716	2	7,358	1,374	,255
	Within Groups	1526,530	285	5,356		
	Total	1541,247	287			
ILU_IMP_	Between Groups	5,164	2	2,582	2,469	,086
	Within Groups	296,975	284	1,046		
	Total	302,139	286			
PERS_AG_	Between Groups	18,551	2	9,275	2,197	,113
	Within Groups	1203,279	285	4,222		
	Total	1221,830	287			
PERS_IM1	Between Groups	12,647	2	6,323	2,775	,064
	Within Groups	649,353	285	2,278		
	Total	662,000	287			
PRIV_AG_	Between Groups	10,094	2	5,047	1,078	,342
	Within Groups	1330,045	284	4,683		
	Total	1340,139	286			
PRIV_IM1	Between Groups	14,730	2	7,365	4,324	,014
	Within Groups	483,702	284	1,703		
	Total	498,432	286			
TAM_AG_N	Between Groups	4,793	2	2,397	,513	,599
	Within Groups	1331,207	285	4,671		
	Total	1336,000	287			
TAM_IMP_	Between Groups	6,604	2	3,302	2,175	,116
	Within Groups	432,726	285	1,518		
	Total	439,330	287			
TAMV_AG_	Between Groups	15,233	2	7,617	1,336	,265
	Within Groups	1625,378	285	5,703		
	Total	1640,611	287			
TAMV_IM1	Between Groups	13,795	2	6,897	3,757	,025
	Within Groups	523,202	285	1,836		
	Total	536,997	287			

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
TERR_AG_	Between Groups	2,134	2	1,067	,254	,776
	Within Groups	1199,185	285	4,208		
	Total	1201,319	287			
TERR_IM1	Between Groups	10,464	2	5,232	3,125	,045
	Within Groups	477,115	285	1,674		
	Total	487,580	287			
VENT_AG_	Between Groups	5,319	2	2,659	,594	,553
	Within Groups	1276,178	285	4,478		
	Total	1281,497	287			
VENT_IM1	Between Groups	3,080	2	1,540	1,077	,342
	Within Groups	407,500	285	1,430		
	Total	410,580	287			
VIST_AG_	Between Groups	21,145	2	10,573	1,554	,213
	Within Groups	1939,466	285	6,805		
	Total	1960,611	287			
VIS_IMP_	Between Groups	6,688	2	3,344	1,851	,159
	Within Groups	514,812	285	1,806		
	Total	521,500	287			

Multiple Comparisons

Tukey HSD

			Mean			95% Confidence Interval	
Dependent Variable	(I) CAR4	(J) CAR4	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
AGLO_AG_	-1,00	,00	,449	,285	,257	-,219	1,117
		1,00	,176	,284	,811	-,491	,842
	,00	-1,00	-,449	,285	,257	-1,117	,219
		1,00	-,273	,300	,634	-,978	,431
	1,00	-1,00	-,176	,284	,811	-,842	,491
		,00	,273	,300	,634	-,431	,978
AGLO_IM1	-1,00	,00	,112	,183	,814	-,317	,541
		1,00	6,225E-02	,183	,938	-,366	,490
	,00	-1,00	-,112	,183	,814	-,541	,317
		1,00	-4,954E-02	,193	,964	-,501	,402
	1,00	-1,00	-6,225E-02	,183	,938	-,490	,366
		,00	4,954E-02	,193	,964	-,402	,501

Tukey HSD

			Mean				onfidence erval
Dependent Variable	/I) CARA	(I) CARA	Difference (I-J)	Ctd Free	C:-	Lower	Upper
COH AG N	(I) CAR4 -1,00	(J) CAR4	,923	Std. Error	Sig.	Bound	Bound
CON_AG_N	-1,00	1,00		1,418	,792	-2,401	4,24
	,00	-1,00	-1,745	1,414	,433	-5,059	1,56
	,00		-,923	1,418	,792	-4,248	2,40
	1.00	1,00	-2,669	1,494	,174	-6,170	,83
	1,00	-1,00	1,745	1,414	,433	-1,569	5,05
COLLIND	1.00	,00	2,669	1,494	,174	-,833	6,17
COH_IMP_	-1,00	,00	1,255	1,378	,633	-1,974	4,48
	- 22	1,00	-1,313	1,373	,605	-4,532	1,90
	,00	-1,00	-1,255	1,378	,633	-4,484	1,97
		1,00	-2,568	1,451	,180	-5,969	,83
	1,00	-1,00	1,313	1,373	,605	-1,906	4,53
		,00	2,568	1,451	,180	-,833	5,96
COM_AG_N	-1,00	,00	,321	,282	,490	-,339	,98
		1,00	-,253	,280	,637	-,910	,40
	,00	-1,00	-,321	,282	,490	-,982	,33
		1,00	-,575	,297	,129	-1,270	,12
	1,00	-1,00	,253	,280	,637	-,403	,91
		,00	,575	,297	,129	-,121	1,27
COM_IMP_	-1,00	,00	,132	,184	,752	-,298	,56
		1,00	,138	,182	,730	-,289	,56
,	,00	-1,00	-,132	,184	,752	-,562	,29
		1,00	5,941E-03	,193	,999	-,447	,45
	1,00	-1,00	-,138	,182	,730	-,565	,289
		,00	-5,941E-03	,193	,999	-,459	,44
CONI_AG_	-1,00	,00	2,867E-03	,314	1,000	-,733	,73
		1,00	,325	,313	,552	-,408	1,05
	,00	-1,00	-2,867E-03	,314	1,000	-,738	,73
		1,00	,322	,331	,593	-,452	1,09
	1,00	-1,00	-,325	,313	,552	-1,058	,408
		,00	-,322	,331	,593	-1,097	,452
CONI_IM1	-1,00	,00	,225	,168	,373	-,168	,617
		1,00	2,035E-02	,167	,992	-,371	,412
	,00	-1,00	-,225	,168	,373	-,617	,168
		1,00	-,204	,177	,479	-,618	,210
	1,00	-1,00	-2,035E-02	,167	,992	-,412	,37
		,00	,204	,177	,479	-,210	,618
DEC_AG_N	-1,00	,00	-2,109E-02	,293	,997	-,707	,665
		1,00	-,270	,292	,624	-,954	,414
	,00	-1,00	2,109E-02	,293	,997	-,665	,707
		1,00	-,249	,308	,698	-,972	,474
	1,00	-1,00	,270	,292	,624	-,414	,954
	.,	,00	,249	,308	,698	-,474	,972
DEC IMP	-1,00	,00	,411	,194	,098	-4,476E-02	,866
	.,00	1,00	3,047E-02	,194	,986		
	,00	-1,00	-,411	,194		-,424	,485
	,00	1,00	-,411	,194	,087 ,151	-,866 -,860	4,476E-02 9,949E-02

Tukey HSD

			Mean			95% Cor Inte	
Dependent			Difference			Lower	Upper
Variable	(I) CAR4	(J) CAR4	(I-J)	Std. Error	Sig.	Bound	Bound
DEC_IMP_	1,00	-1,00	-3,047E-02	,194	,986	-,485	,424
		,00	,380	,205	,151	-9,949E-02	,860
ILU_AG_N	-1,00	,00	-,540	,330	,231	-1,314	,234
		1,00	-,159	,329	,880	-,930	,613
	,00	-1,00	,540	,330	,231	-,234	1,314
		1,00	,382	,348	,516	-,434	1,197
	1,00	-1,00	,159	,329	,880	-,613	,930
		,00	-,382	,348	,516	-1,197	,434
ILU_IMP_	-1,00	,00	,325	,146	,067	-1,777E-02	,668
		1,00	,146	,146	,574	-,195	,488
	,00	-1,00	-,325	,146	,067	-,668	1,777E-02
		1,00	-,179	,154	,476	-,539	,182
	1,00	-1,00	-,146	,146	,574	-,488	,195
	.,	,00	,179	,154	,476	-,182	,539
PERS AG	-1,00	,00	-6,040E-03	,293	1,000	-,693	,68
1 2.10_7.0_	.,	1,00	-,552	,292	,142	-1,237	,133
	,00	-1,00	6,040E-03	,293	1,000	-,681	,693
	,00	1,00	-,546	,309	,181	-1,270	,178
	1,00	-1,00	,552	,292	,142	-,133	1,23
	1,00	,00	,546	,309	,181	-,178	1,27
PERS_IM1	-1,00	,00	,163	,215	,731	-,342	,668
FERO_IIVI	1,00	1,00	-,358	,215	,219	-,861	,146
	,00	-1,00	-,163	,215	,731	-,668	,342
	,00	1,00	-,520	,227	,057	-1,052	1,153E-0
	1,00	-1,00	,358	,215	,219	-,146	,86
	1,00	,00	,520	,227	,057	-1,153E-02	1,05
PRIV AG_	-1,00	,00	,109	,310	,934	-,616	,834
PKIV_AG_	-1,00	1,00	,442	,309	,324	-,281	1,16
	,00	-1,00	-,109	,310	,934	-,834	,61
	,00	1,00	,333	,325	,562	-,429	1,09
	1,00	-1,00	-,442	,309	,324	-1,165	,28
	1,00	,00	-,333	,325	,562	-1,095	,429
DDIV/ IM1	-1,00	,00	-9,318E-02	,187	,872	-,531	,344
PRIV_IM1	-1,00	1,00	-,524*	,186	,013	-,960	-8,803E-02
	-00	-1,00		,187	,872	-,344	,53
	,00		9,318E-02	1	,072	-,891	2,889E-0
	1.00	1,00	-,431	,196		8,803E-02	,960
	1,00	-1,00	,524*	,186	,013		
TAME AS N	1.00	,00	,431	,196	,072	-2,889E-02	,89
TAM_AG_N	-1,00	,00	,304	,308	,586	-,419	1,02
		1,00	7,086E-02	,308	,971	-,650	,79:
	,00	-1,00	-,304	,308	,586	-1,027	,41
	1.00	1,00	-,233	,325	,753	-,995	,52
	1,00	-1,00	-7,086E-02	,308	,971	-,792	,65
		,00	,233	,325	,753	-,528	,99
TAM_IMP_	-1,00	,00	,181	,176	,558	-,231	,59
		1,00	-,205	,175	,472	-,616	,20

Tukey HSD

			Mean				nfidence erval
Dependent Variable	(I) CAR4	(J) CAR4	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
TAM_IMP_	,00	-1,00	-,181	,176	,558	-,593	,231
		1,00	-,386	,185	,093	-,820	4,817E-02
	1,00	-1,00	,205	,175	,472	-,206	,616
		,00	,386	,185	,093	-4,817E-02	,820
TAMV_AG_	-1,00	,00	-,393	,341	,481	-1,192	,406
		1,00	,179	,340	,859	-,618	,975
	,00	-1,00	,393	,341	,481	-,406	1,192
		1,00	,572	,359	,249	-,270	1,413
	1,00	-1,00	-,179	,340	,859	-,975	,618
		,00	-,572	,359	,249	-1,413	,270
TAMV_IM1	-1,00	,00	,363	,193	,146	-9,064E-02	,816
_		1,00	-,185	,193	,602	-,637	,267
	,00	-1,00	-,363	,193	,146	-,816	9,064E-02
	,	1,00	-,548*	,204	,020	-1,025	-7,037E-02
	1,00	-1,00	,185	,193	,602	-,267	,637
	,	,00	,548*	,204	,020	7,037E-02	1,025
TERR AG	-1,00	,00	,128	,293	,900	-,558	,814
12.11.	1,00	1,00	-9,060E-02	,292	,948	-,775	,593
	,00	-1,00	-,128	,293	,900	-,814	,558
	,00	1,00	-,218	,308	,758	-,941	,504
	1,00	-1,00	9,060E-02	,292	,948	-,593	,775
	1,00	,00	,218	,308	,758	-,504	,941
TERR IM1	-1,00	,00	,304	,185	,227	-,129	,737
I LIVI LIVI	1,00	1,00	-,176	,184	,604	-,608	,255
	,00	-1,00	-,304	,185	,227	-,737	,129
	,00	1,00	-,480*	,195	,036	-,936	-2,421E-02
	1,00	-1,00	,176	,184	,604	-,255	,608
	1,00	,00	,480*	,195	,036	2,421E-02	,936
VENT_AG_	-1,00	,00	-8,282E-02	,302	,959	-,791	,625
VENT_AO_	-1,00	1,00	,248	,301	,688	-,458	,954
	,00	-1,00	8,282E-02	,302	,959	-,625	,791
	,00	1,00	,331	,318	,552	-,415	1,076
	1,00	-1,00	-,248	,301	,688	-,413	,458
	1,00	,00	-,331	,318	,552	-1,076	,415
VENIT IMA	-1,00	,00					
VENT_IM1	-1,00	1,00	,211	,171	,431	-,189	,611
	-00		-2,693E-02	,170	,986	-,426	,372
	,00	-1,00	-,211	,171	,431	-,611	,189
	1.00	1,00	-,238	,180	,381	-,659	,183
	1,00	-1,00	2,693E-02	,170	,986	-,372	,426
VICT AC	1.00	,00	,238	,180	,381	-,183	,659
VIST_AG_	-1,00	,00	-,421	,372	,496	-1,293	,452
		1,00	,264	,371	,757	-,606	1,134
	,00	-1,00	,421	,372	,496	-,452	1,293
	1.00	1,00	,685	,392	,188	-,234	1,604
	1,00	-1,00	-,264	,371	,757	-1,134	,606
		,00	-,685	,392	,188	-1,604	,234

Tukey HSD

			Mean			95% Co	nfidence rval
Dependent Variable	(I) CAR4	(J) CAR4	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
VIS IMP	-1,00	,00	,360	,192	,146	-8,986E-02	,809
		1,00	8,523E-02	,191	,896	-,363	,533
1	,00	-1,00	-,360	,192	,146	-,809	8,986E-02
		1,00	-,275	,202	,363	-,748	,199
	1,00	-1,00	-8,523E-02	,191	,896	-,533	,363
		,00	,275	,202	,363	-,199	,748

^{*.} The mean difference is significant at the .05 level.

Aglomeración (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	2,659
1,00	89	2,933
-1,00	111	3,108
Sia.		,269

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Aglomeración (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	4,591
1,00	89	4,640
-1,00	111	4,703
Sig.		,820

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Coherencia (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	3,500
-1,00	111	4,423
1,00	89	6,169
Sig.		,154

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Coherencia (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	4,466
-1,00	111	5,721
1,00	89	7,034
Sig.		,159

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Complejidad (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	87	2,931
-1,00	111	3,252
1,00	89	3,506
Sig.		,111

- a. Uses Harmonic Mean Sample Size = 94,520
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Complejidad (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	4,258
,00	87	4,264
-1,00	111	4,396
Sig.		,740

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,520
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Control de iluminación (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	3,360
,00	88	3,682
-1,00	111	3,685
Sig.		,565

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Control de iluminación (importancia)

Tukey HSDd,U

CAR4	N	Subset for alpha = .05
,00	88	4,830
1,00	89	5,034
-1,00	111	5,054
Sig.		.386

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Decoración (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	2,820
,00	88	2,841
1,00	89	3,090
Sig.		,636

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Decoración (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	4,148
1,00	89	4,528
-1,00	111	4,559
Sig.		,094

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Nivel de iluminación (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	4,414
1,00	89	4,573
,00	88	4,955
Sig.		,242

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Nivel de iluminación (importancia)

Tukey HSDa,u

CAR4	N	Subset for alpha = .05
,00	88	5,102
1,00	89	5,281
-1,00	110	5,427
Sig.	1	,073

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,666
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Personalización (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
-1,00	111	3,414
,00	88	3,420
1,00	89	3,966
Sig.		,153

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Personalización (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	2
,00	88	3,693	
-1,00	111	3,856	3,856
1,00	89		4,213
Sig.		,738	,232

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Privacidad (agrado)

Tukey HSDa,u

	,	Subset for alpha = .05
CAR4	N	1
1,00	89	3,303
,00	88	3,636
-1,00	110	3,745
Sig.		,338

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,666
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Privacidad (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	2
-1,00	110	4,555	
,00	88	4,648	4,648
1,00	89		5,079
Sig.		,875	,060

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,666
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	3,227
1,00	89	3,461
-1,00	111	3,532
Sig.		,596

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	4,648
-1,00	111	4,829
1,00	89	5,034
Sig.		,079

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño de ventanas (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	3,326
-1,00	111	3,505
,00	88	3,898
Sig.		,225

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tamaño de ventanas (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	2
,00	88	4,250	
-1,00	111	4,613	4,613
1,00	89		4,798
Sig.		,156	,614

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Territorialidad (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	3,557
-1,00	111	3,685
1,00	89	3,775
Sig.		,743

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Territorialidad (importancia)

Tukey HSDa,u

		Subset for alpha = .05	
CAR4	N	1	2
,00	88	4,273	
-1,00	111	4,577	4,577
1,00	89		4,753
Sig.		,238	,616

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Ventilación (agrado)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
1,00	89	4,112
-1,00	111	4,360
,00	88	4,443
Sig.		,528

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Ventilación (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	4,807
-1,00	111	5,018
1,00	89	5,045
Sig.		,356

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Vista al exterior (agrado)

Tukey HSDa,u

CAR4	N	Subset for alpha = .05
1,00	89	3,258
-1,00	111	3,523
,00	88	3,943
Sig.		,167

Means for groups in homogeneous subsets are displayed.

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Vista al exterior (importancia)

Tukey HSDa,u

		Subset for alpha = .05
CAR4	N	1
,00	88	4,568
1,00	89	4,843
-1,00	111	4,928
Sig.		,155

- a. Uses Harmonic Mean Sample Size = 94,911
- b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.